
Mesa Debugger Documentation

Version 4.0
May 1978

The facilities documented here are the workings of an interactive Mesa debugger. It has
been designed to support source level debugging; it provides facilities that al10w users to set
breakpoints, trace program execution, display the runtime state, and interpret Mesa
statements.

XEROX
SYSTEM DEVELOPMENT DIVISION
3408 Hillview Avenue / Palo Alto / California 94304

This. document is for intemal Xerox use only.

Preface

May 1978

The facilities documented here are the workings of an interactive Mesa debugger. It has been
designed to support source level debugging; it provides facilities that allow users to set
breakpoints, trace program execution, display the runtime state, and interpret Mesa statements.
Due to the space required to provide all of these capabilities, the Mesa debugger lives a core swap
away from the program being debugged.

This documentation is divided into six parts. Section 1 is an overview, Section 2 explains the
debugger's input conventions and contains a summary of the command tree structure, Section 3
explains the semantics of each command, Section 4 explains the debugger interpreter, Section 5
explains the debugger's output conventions, and Section 6 explains the signal and error messages.
The Jvlesa User's llandbook contains further details on how to obtain, install, and use the
debugger.

The Mesa debugger is intended for use by experienced programmers already familiar with Mesa.
All suggestions as to the form, correctness, and understandability of this document should be sent
to your support group. All of us involved in the development of Mesa welcome feedback and
suggestions on debugger development.

Mesa Debugger Doculllentation 2

Section 1: Overview

The debugging and runtime facilities differ in their relationship to the user program. When you
invoke Mesa, the Ivl esa Executive is the code necessary for your program to communicate with
the debugger and resides along with the user program. It also serves the function of an executive
when the Mesa system is first started (sec the AI esa System Documentation for further details).
The d ehugger resides in a different core image which is loaded when called for (in very much the
same way as Swat). The debugger nub is used for installing the debugger and primitive debugging
operations (Section 3 contains further details).

Invoking the debuggcr

At system start- up, the Mesa Executive is given control in a context from which all the various
system utilities are visible. At this point there arc several ways of invoking the debugger. The
straightforward method is to issue the Debug command to the Ivl esa Executive; this brings you
into the debugger, ready to execute a command. If you wish to enter the debugger at any time
(Le., while your program is running), tSWAT interrupts your program. (Note that if you really get
in trouble tSHIFT· SWAT brings you into Swat, at which point you may boot the machine and re
enter the debugger. Section 6 contains further details on bootloading the debugger.)

In the course of running your program, you may enter the debugger for several other reasons,
including an uncaught signal generated by your program, execution of a breakpoint/tracepoint
that has been placed in your program, or a fatal system error that forces your program to abort
(Section 6 contains further details on the messages displayed when entering the debugger in these
si tuations).

Talking to the debuggcr

The user interface to the debugger is controlled by a command processor which invokes a
collection of procedures for managing breakpoints, examining user data symbolically, and setting
the context in which user symbols arc looked up. The command syntax is tree structured and
each character is extended to the maximal unique string which it specifics.

Whenever an invalid character is typed, a ? is displayed and you arc returned to command level.
Typing a ? at any point during command selection prompts you with the collection of valid
characters (in upper case) and thci r associated maximal strings (in lower case) and returns you to
command level. Whenever a valid command is recognized, you arc prompted for parameters
(Section 2 contains further details on the input conventions). Typing DEL at any point during
command selection or parameter collection returns you to the command processor; typing tDEL at
any point during command execution aborts the command.

When initialized, the debugger creates three windows: the DEBUG.TYPESCRIPT window (which
becomes a log of the debugging session), a source window (which is loaded with the source file
when breakpoints arc set or the source location is requested), and a local copy of the
MESA.TYPESCRIPT window (for easy reference). These windows may be manipulated by installing
the window executive (WINDEX) with your .debugger (see the A1esa User's Halldbook for further
details).

Mesa Debugger Documentation 3

Current context

The interpretation of symbols (including displaying variables, setting breakpoints, and calling
procedures) is based on the notion of the current context; it consists of the current frame and its
corresponding module, configuration, and process. The symbol lookup algorithm used by the
debugger is as follows: it searches the runtime stack of procedure frames in LIFO order by
examining first the local frame of each procedure (and then its associated global frame)
following return links, until the root of the process is encountered.

When you first enter the debugger, the context is set to the frame of whatever process is currently
running (Le., to the lvlesa Executive, jf you enter via the Debug command; to your program, if it
is interrupted or at a breakpoint). There are commands which make it simple to change between
contexts (SEt Context), to display the current context (CUrrent context), and to examine the
current dynamic state (Display Stack).

Leaving the debugger

Once you are in the debugger, you may execute any number of commands that allow you to
examine (and change) the state of your program. When you are finished, you may decide either
to continue execution of your program (P roceed), terminate execution of your program (Qu it),
or end the debugging session completely and return to the AlLo Executive (Kill session).
Section 3 contains further details on these commands.

Input Conventions 4

Section 2: Input Conventions

The input conventions of the debugger's command processor are summarized below, along with
the tree for the command syntax. The command processor prompt character is ")" for the
debugger and "I" for the debugger nub (actually, the character is repeated once for each nesting
level of the debugger). Whenever a valid command is recognized, the debugger prompts for the
parameters associated with that command (if any are required) according to the conventions
described below. Typing DEL terminates the command; ? gives a list of valid commands. When a
command requires a [confi rm] (CR), the debugger enters wait- for- DEL mode if an invalid
character is typed.

String input

Identifiers are sequences of characters beginning with an upper or lower case letter and
terminating with a space (sp) or a carriage return (CR). Type names are accepted as either
modul ename. type or simply a valid type name terminated by CR. Source text and conditions
(for setting breakpoints) must be terminated by CR since spaces (sp) are significant in these
strings. The debugger echoes a delimiting character of its own choice in order to minimize loss
of information from the display.

Numeric input

A numeric parameter is a sequence of characters terminated by Sp or CR which is processed by a
very simple expression parser; it accepts constants in either octal or decimal and the operators
+, " ., I. Evaluation is strictly left- to- right with no precedence or parentheses allowed. All
forms of numeric constants allowed by the Mesa syntax are accepted. The default radix is octal
for addresses (and input to octal commands) and decimal for everything else (unless otherwise
specified in Section 3). Use the "0" suffix to force decimal interpretation and "B" to force octal.

Default values

The debugger saves the last values used as parameters to all of the commands; these values may
be recalled by the escape key (ESC). The following parameters have default values which may be
used or inspected by typing ESC: octal read address, octal write address, ascii read address,
module, configuration, root configuration, variable, procedure, program, array, array index, string,
string index, type, source, condition, expression, process, address, and frame. After the default
parameter is displayed by the debugger, the standard input editing characters may be used to
modify it. The ESC values for octal read/write addresses (as well as string and array indices) are
incremented after each usc. Typing ESC to the command processor uses the last command as the
default command ·(Le., you receive the prompt for the parameters, if any, for the previously
executed command).

Editing ch~tracters

The standard editing characters accepted as input arc: CONTROL· A, CONTROL· H, or BS to delete a
character; CONTROL· w or CONTROL· Q to delete a word; CONTROL· X to delete a line; CONTROL· R to
retype a liile; and CONTROL· V to quote the next character.

Input Conventions 5

Command Tree

This is the command tree structure for the Mesa debugger. Capitalized letters are typed by the
user (in either upper or lower case); the lower case substrings are echoed· by the command
processor. Each command is described in Section 3 along with its parameters.

AScii read
ATtach Image

Symbols
Break Entry

Module
Procedure
Xit

CAse off
on

CLear All Breaks
Entry traces
Traces
Xit traces

Break
Entry Break

Trace
Module Break

Trace
Trace
Xit Break

Trace
COremap
CUrrent context
Display Configuration

Eval-stack
Frame
GlobalFrameTable
Module
Process
Queue
Stack
Variable

Find variable
Interpret Array

Call
De-reference
Expression
Pointer
String
@

Kill session
List Breaks

Configurations
Processes
Traces

Octal Clear break
Read
Set break
Write

Proceed
Quit
Reset context
SEt Configuration

Module context
Octal context
Process context
Root configuration

STart
Trace All Entries

Xits
Entry
Module
Procedure
Xit

Userscreen
Worry off

on
-- comment

Debugger commands 6

Section 3: Debugger conlmands

The debugger provides facilities for managing breakpoints, eXamInIng user data symbolically,
setting the context in which the user symbols are looked up, directing program control, low-level
utilities, and a debugger nub used for installing (and debugging) the debugger itself. The
semantics of the commands are summarized below (Section 2 contains further details regarding
input conventions and Section 5 contains details of output conventions).

Breakpoints

The break/trace commands apply to modules and procedures that are known within the current
context. All breakpoints/tracepoints may optionally be conditional. If you type a SP after the
module (or procedure) name, you receive a prompt for the condition; if you type a CR it
terminates the command input (in the case of entry/exit breaks) or prompts for the source (in
the case of text breaks). All of the breakpoint commands accept a valid GlobalFrameHandle as
input when prompted for a module naIDe.

The three valid formats of a condition arc: variable relation variable, variable relation number, and
number (multiple proceeds). Conditions include relations in the set {<, >, =., #, < =., > =}. The
variables arc in terpreted expressions and are therefore looked up in. the current context.
However, if you are in a module context and wish to specify a local variable of the p~ocedure
you are setting the breakpoint in,' p roc. var may be used.

You may set break or tracepoints at the following locations in your program: entry (to a
procedure), exit (from a procedure), and at the closest statement boundary preceding a specific

. text location within a procedure or module body. When a break/trace is encountered during
execution, the debugger types the name of the body being broken, tl~e text corresponding to that
code location, and the address of the currently active frame; it also positions the source window
with the breakpoint source at the' top.

Break Entry [proc, condition]

inserts a breakpoint (optionally conditional) in the procedure proc at the first instruction
after the code which stores the input parameters in proc's frame (see Break P rocedu re
for further details).

Break Modu 1 e [module, condition, source]

sets a breakpoint (optionally conditional) in the program body named module at the
beginning of the statement defined by the line containing the first instance of the string
source. The search for source commences at the beginning of the module and extends to
the end- of- file (see Break Procedu re for further details).

Break Procedure [proc, condition, source]

sets a breakpoint (optional1y conditional) in the procedure body named proc at the
beginlling of the statement containing the first instance of the string source. The search
for source com mences ,~t the begin n i ng of the tex t for proc and extends to the end- of~
rile. When the breakpoint is set, the indicator <> appears to the left of the source where

Debugger commands 7

the breakpoint has actually been set (Le., IF foo THEN (> some statement;).

When a breakpoint is encountered during execution, a nested instance of the debugger is
created and control transfers to the command processor, from which you may access any
of the facilities described in this document. To continue execution of your Mesa
program, execute the Proceed command; to stop execution of your program, execute the
Qu i t command (see the Breakpoints explanation for further details).

B re ak Xi t [proc, condition]

inserts a breakpoint at the last instruction of the procedure body .for proc (see Break
P rocedu re for further details). Note: this catches all RETURN statements.

CLear All Breaks [confirm]

clears all breakpoints.

CLear All Entry traces [module]

removes all entry traces in module.

CLear All Traces [confirm]

clears all tracepoints.

CLear All Xit traces [module]

removes all exit traces in module.

CLear Break [proc, source]

converse of Break Procedure.

CLear Entry Break [proe]

converse of Break Entry.

CLear Entry Trace [proe]

converse of Trace Entry.

CLear Modul e Break [module, source]

converse of Break Modu 1 e.

CLear Modul e rrace [module, source]

converse of Trace Modul e.

CLear Trace [proc, source]

converse of Trace Procedure.

Debugger commands 8

CLear

CLear

List

Xit Break [proc]

converse of Break X it.

Xit Trace [proc]

converse of Trace X it.

Breaks [confirm]

lists all breakpoints, their type (entry, exit, source), and the procedure and/or module
name in which they are found. For source breakpoints, the source text is also displayed.

List Traces [confirm]

lists all tracepoints (cf. List Breaks).

Trace All Entries [module]

sets a trace on the entry point to each procedure in module (cf. Trace Ent ry).

Trace All Xits [module]

sets a trace on the exit point of each procedure in module (cf. T race Xi t).

Trace Entry [proc, condition]
. .

sets a trace on the entry point to the procedure proc. When an entry tracepoint is
encountered, proc's parameters are displayed and you are prompted with ")" (sec Trace
P rocedu re for further details).

Trace Modu 1 e [module, condition, source]

sets a trace in the program body named module at the beginning of the statement defined
by the line containing the first instance of the string source. The search for source
commences at the beginning of the module and extends to the end- of- file (see Trace
P rocedu re for further details).' .

Trace Procedure [proc, condition, source]

sets a trace (optionally conditional) in the procedure body named proc at the beginning of
the statement defined by the line containing the first instance of the string source. The
search for source commences at the beginning of the text for proc and extends to the end
of- file.

When the tracepoint is reached, you may respond to the ")" prompt with the standard
replies (cf. 0 i sp 1 ay Stack) for Iisti ng the parameters, return values, or local variables.
In order to continue execution, execute the Q (or q) subcommand. In addition to the
standard rep I ies, you may also type B (or h) which creates a nested instance of the
debugger and sends control to the command processor (as in breakpoints), from which
you may access any of the facilities described in this document (see the Breakpoints
explanation for further details).

Dcbuggcr commands 9

T race Xi t [proc, condition]

sets a trace on the exit of the procedure proc. When an exit tracepoint is encountered,
proc's return values are displayed and you are prompted with ")" (see Trace P rocedu re
for further details).

Display runtime state

The scope of variable lookup is limited to the current context (unless otherwise specified below
to be the current configuration). What this means is the following: if the current context is a
local frame, the debugger examines the local frame of each procedure in the call stack (and its
associated global frame) followi ng return links until the root of the process is encountered; if the
current context is a module (global) context, just the global frame is searched. If the variable you
wish to examine is not within the current context, there are commands provided which change
between contexts. Upper/lower case distinction is not observed in looking up variables (you may
change this default setti ng with the CAse command); however, case shifts arc always significant
in source strings used in setting breakpoints.

In all commands (unless otherwise specified below), variables arc simple identifiers as
distinguished from expressions that arc evaluated by the debugger interpreter. As the interpreter
becomes more fully integrated into the debugger, interpreted expressions will be valid for all
commands, and the Interpret commands will be removed from the debugger's command
processor.

ASc i i read [uddress, n]

displays n (decimal) characters starting at address (octal).

CAse off [confirm]

ignores the distinction between upper and lower case during symbol lookup. This is the
default state when you enter the debugger, except that upper and lower case are always
significant in source strings for breakpoints (sec Displuy runtime state explanation).

CAse on [confirm]

observes the distinction between upper and lower case during symbol-lookup. Once set,
this state persists until you execute a CAse off command.

Display Configuration

displays the name of the current configuration followed by the module name,
corresponding global frame address, and instance name (if one exists) of each module in
the current configuration.

Display Frame [address]

displays the contents of a frame, where address is its octal address (useful if you have
several instances of the same module.)

Debugger commands 10

Display GlobalFrameTable

displays the module name and corresponding global frame address, pc, codebase, and gfi
of all entries in the global fraIne table.

Display Module [module]

displays the contents of a global frame, where module is the name of a program in the
current con figuration.

Di sp 1 ay P roces s [process]

is a specialized version of Display Variable that displays interesting things about a
process. This command shows you the ProcessHandle and the frame associated with
process, and whether the process is waiting on a monitor or condition variable (wa it i ng
ML or wa it i ng CV). Then you are prompted with a ")" and you enter process
subcommand mode. A response of N displays the next process in the array of psbs; S
displays the source text; R displays the root frame of the process; P displays the priority
of the process; and Q or DEL terminates the display and returns you to the command
processor. Note that either a variable of type PROCESS (returned as the result of a FORK)

or an octal ProcessHandle is acceptable as input to this command (note that process is an
interpreted expression).

Di sp 1 ay Queue [id]

displays all the processes wai ting on the queue associated with id. For each process, you
enter process subcommand mode. The semantics of the subcommands remain the same as
in Display Process, with the exception of N, which in this case follows the link in the
process. This command accepts either a condition variable, a monitor lock, a monitored
record, a monitored program, or an octal pointer (as in a pointer to the ReadyUst). Note
that id is an interpreted expression; if id is simply an octal number, you are asked
whether it is a condition variable in order for the debugger to know where to find the
head of the queue (Le., Display Queue: 1750346, condition variable? [Y or N]).

Display Stack

follows down the procedure call stack. At each frame, the corresponding body's name
and frame address are displayed. You are prompted with a ")". A response of V displays
all the frame's variables; P displays the input parameters; R displays the return values
(those which are "named" in the RETURNS part of the body declaration); N moves to the
next frame; J, n(10) jumps down the stack n (decimal) levels (note that if n is greater than the

number of levels it can advance, the debugger tells you how far it was able to go); S displays the source
text; and Q or DEL terminates the display and returns you to the command processor.
When the current contex t is a global frame, the D i sp 1 ay Stack subcommands J and N
are disabled. When the debugger cannot find the symbol table for a frame on the call
stack, only' the J, N, and Q subcommands are allowed. For a complete description of the
output format, see Section 5.

Dis play Va ria b 1 e [i d]

displays the contents of the variable named itl, limiting the scope of its search to the
current context.

Debugger commands 11

Find Variable [ill]

displays the contents and module location of the variable named id, searching through all
the modules in the current configuration.

Interpret Array [array, index, n]

displays the value(s) of n (decimal) clements starting with array[index] .

Interpret Call [proc]

calls the procedure proc, after prOlnpting for parameters one word at a time. The
parameters must be constants (the default radix is decimal) or simple identifiers. Note
that no type checking is done.

Interpret De-reference [ptr]

chases the ptr one level. Note: ptr must be a pointer type.

Interpret Expression [exp]

evaluates exp using the simple numeric parser described in Section 2 and prints out the
value in octal and decimal. This can be used for quick calculations or for octal to
decimal conversions.

Interpret Pointer [address, type]
. .

symbolically displays (according to the type) the value(s) stored at location address. The
type should be the type of the data, rather than the type of the pointer; it may be of the
form modulename.type. In searching for type, if the modulcname is omitted, the debugger
first examines the current local frame and then the corresponding global frame and its
included modules.

Interpret String [string, index, 0]

displays n (decimal) characters of string beginning at index.

Interpret @ [var]

returns the address of var.

Current context

The current context is used to determine the domain for symbol lookup. There are commands
provided which make it simple to display the current context, to display all the configurations
and processes, to restore the starting context, and to change between contexts.

CUrrent context

displays the name and corresponding global frame address (and instance name if one
exists) of the current module,' the name of the current configuration, and the
ProcessHandle for the current process.

Debugger commands 12

List Configurations [confirm]

lists the name and instance name (if one exists) of each configuration that is loaded,
beginning with the last configuration loaded. If you wish to see more information about
a particular configuration, use the Display Configuration command.

List Processes [confirm]

lists all processes by ProcessHandle and frame. If you wish to see more information
about a particular process, usc the D i sp 1 ay P roces s command.

Reset context [confirm]

restores the context which this instance of the debugger had upon entering the session.

SEt Configuration [config]

sets the current configuration to be config, where config is nested within the root
configuration that is current. This command is useful for "jumping" further into the
nested block structure of a configuration.

SEt Modul e context [module]

changes the context to the program module whose name is module (within the current
configuration). If there is more than one instance of module, the debugger lists the frame
address of each instance and does 110/ change the context. You may use the SEt Octal
context command to set the context to a frame address.

SEt Octal context [address]

changes the context to the frame whose address is address (cf. SEt Modul e context).
This is useful when there are several instances of the same module.

SEt Process context [process]

sets the current process context to be process and sets the corresponding frame context to
be the frame associated with process. Upon entering the debugger for the first time, the
process context is set to the currently running process. Note that either a variable of type
PROCESS (returned as the result of a FORK) or an octal ProcessHandle is acceptable as input
to this command.

SEt Root configuration [config]

sets the current configuration to be config, where config is at the outermost level (of its
configuration). This command is sufficient for simple configurations of only one level.
It is also useful in getting you to the outermost level of nested configurations, from
which you may move "in" using SEt Configuration.

Program control

There are commands provided which allow you to determine the flow of control between the
debugger and YO~lr program.

Debugger commands 13

Proceed [confirm]

continues execution of the program (Le., proceeds from a breakpoint, resumes from an
uncaught signal).

Quit [confirm]

returns control to the dynamically enclosing instance of the debugger (if there is one).
Executing a Qu i t has the effect of cutting the runtime stack back to the nearest enclosing
instance of the debugger. Qu i tting from the outermost level of the debugger returns you
to the Alesa Executive; Quitting from the Mesa Executive returns you to the Alto
Executive.

STart [address]

starts execution of the module whose frame is address. Unlike the language START

statement, no parameters may be passed.

Userscreen [confirm]

swaps to the user world for a look at the screen. Control is returned to the debugger with
the SWAT key.

Low-level facilities

There are additional commands provided which allow the user to examine (and m"odify) what is
going on in the underlying system.

ATtach Image [filenmne]

specifies the filename to usc as an image file when the debugger has been bootloaded. It
is useful when" the user core image has been clobbered. The default extension for
filename is ".image".

AT tach Symbo 1 s [globalframe, filename]

attaches the globalfrmne to filename. This is useful for allowing you to bring in
additional symbols for debugging purposes not initially anticipated. The default
extension for filename is ".bed".

COremap [confirm]

prints the following information (in. octal) about the segments currently in memory:
memory page number, memory address, file page number (if it is a file), number of pages,
state f busy, free, data, file}, serial number (i f it is a file), class {code, other}, access
{Read, Write, Append}, lock. If the class is code, the module name is also given. Typing
tDEL terminates the printout.

Display Eval-stack

displays the contents of the Mesa evaluation stack (in octal), useful for low- level
debugging or for displaying the (un- named) return values of a procedure which has been
broken at its exit poi n t. Th is command is on ly useful when reachi ng octal break points

Dcbuggcr comnumds 14

because the eval- stack is em pty between statements.

Kill session [confirm]

ends your debugging session, cleans up the state as much as possible, and returns to the
Alto Executive. Use this command instead of SHiff· SWAT or the boot button to leave the
debugger.

Octal Clear break [globalfrmnc, bytcpc]

converse of acta 1 Set break. (Note: these octal commands are low-level debugging
aids for system maintainers who must diagnose the higher-level debugging aids and
system.)

acta 1 Read [address, n]

displays the n (decimal) locations starti ng at address.

acta 1 Set break [globalfrnme, bytcpc]

sets a breakpoint at the byte offset bytepc in the code segment of the frame globalframc.

acta 1 Wr i te [addrcss, fhs]

stores rhs (octal) into the location addrcss; the default for rhs is the current contents of
addrcss.

Worry on [confirm]

taking a breakpoint in worry mode brings you into the debugger with the user core image
undisturbed (Le., no cleanup procedures are invoked, no frames are allocated, and memory
is left unchanged). All of the debugger commands are allowed, with the exception of
Interpret Call, STart and Quit.

Worry off [confirm]

turns off worry mode (this is the default state upon entering the debugger).

[commcnt]

inserts a comment into the debugger's typescript file. Input is ignored after the dashes
until a carriage return (CR) is typed.

tDebug [conf i rm]

invokes the debugger Ilub which prompts with a "I I". See Debuggcr nub for further
details about the capabilities of the nub.

Dcbuggcr nub

The Ilub is a part of the debugger that c()ntains primitive facilities for debugging and installing
the debugger as well as providing a minimal signal catcher and interrupt handler. It is possible
to install a di fferent version of the debugger to use for debuggi ng the debugger itself (sec a

Dcbuggcr conlllUmds 15

member of the Mesa Group if you are interested in know~ng more about how this works).

Typing 1'0 (to the command processor of the debugger) brings you into the nub with a "I I"
prompt. The following limited set of commands are available in the nub: Bitmap, Install,
New, Octal Read, Octal Write, Proceed, Quit, and Start. The semantics of Bitmap,
Install, and New are explained below; the other commands have already been explained above.

Bitmap En]

reallocates the bitmap to n (decimal) pages. The default upon starting is about 50 pages.

Install [confirm]

installs the current core image as the debugger.

New [filename]

is just like the language statement NEW.

Debugger J nterpreter 16

Section 4: Debugger Interpreter

The Mesa debugger contains an interpreter that handles a subset of the Mesa language; it is useful
for common operations such as assignments, dereferencing, indexing, field access, addressing, and
simple type conversion. It is a powerful extension to the current debugger command language, as
it allows you to more closely specify your variables while debugging, thus giving you more
complete information with fewer keystrokes. A specific subset of the Mesa language is
acceptable to the interpreter (see below for details on the grammar). Several new notations
(abbreviations) have been introduced into the debugger interpreter grammar; note that these are
not part of the Mesa language itself (valid only for debugging purposes).

Statement Syntax

Typing space (sp) to the command processor enables interpreting mode. At this point the
debugger is ready to interpret any expression that is valid in the (debugger) gramlnar.

Multiple statements are separated by semicolons; the last statement on a line should be followed
by a carriage return (CR). If the statement is a simple expression (not an assignment), the result is
displayed after evaluation.

For example, to perform an assignment and print the result in one command, you would type foo
+- exp; foo.

Loopholes

A more concise LOOPHOLE notation has been introduced to make it easy to display arbitrary data
in any format. The character "%" is used to denote LOOPHOLE[exp, type], with the expression on
the left of the %, and the type on the right.

For example, the expression foo % short red Foo means LOOPHOLE the type of the variable foo to
be a short red Foo and display its value.

Subscripting

There are two types of interval notation acceptable to the interpreter. The notation [a .. b]
means start at index a and end at index b. The notation [a ! b] means start at index a and end
at index (a~ 1).

For example, the expressions MEMORV[4 .. 7] and MEMORY[4 ! 4] both display the octal contents
of memory locations 4 through 7. Note that the interval notation is only valid for display
purposes, and therefore is n.ot allowed as a LeftSide or embedded inside other expressions.

Module Qunlification

To improve the performance of the interpreter, the $ notation has been introduced to distinguish
between module and record quali ficat.ion. The character $ indicates that the name on the left is a
module, in which to look up the identifier or TYPE on the right. If a module cannot be found, it

Debugger Interpreter 17

uses the name as a file (usually a definitions file). A valid octal frame address is· also accepted as
the left argument of $.

For example, FSP$TheHeap means look in the module FSP to find the value of the variable
TheHeap. In dealing with variant records, be SUfe to specify the variant part of the record before
the record name itself (ie., foe % short red FooDefS$Foo, /lot foo % FooDefS$short red Foo).

Type Expressions

The notation "@ type" is used to construct a POINTER TO type. This notation is used for
constructing types in LOOPHOLES (ie., @foo will give you the type POINTER TO foo).

Sample Expressions

Here are some sample expressions which cOlnbine several of the rules into useful combinations:

If you were interested in seeing which procedure was associated with the third keyword of the
menu belonging to a particular window called my Window, you would type:

myWindow.menu.array[3] .proc

which might give you the following output:

CreateWindow (PROCEDURE in WEWindows, G: 1201348).

The basic arithmetic operations are provided by the interpreter (with the same precedence rules
as followed by the Mesa compiler).

3 +4 MOD 2; (3 -t4) MOD 2

would produce the following output:

3
1.

Radix conversion between octal and decimal can be forced using the loophole construct; for
example, exp%cARDINAL will force octal output and exp%INTEGER will force decimal.

A typical sequence of expressions one might use to initialize a record containing an array of Foos
and display some of them would be:

rec.array +- DESCRIPTOR[FSP$AllocateHeapNode[n*slzE[FooDefs$Foo]], n];
InitArray[rec.array]; rec.array[first . .last] .

Debugger Interpreter

Gnmmmr

StmtList

AddingOp

BuiltinCall

Expression

ExpressionList

Factor

Interval

LeftSide

Literal

MultiplyingOp

Primary

Product

Qu·alifier

Stmt

Sum

TypeConstructor

Typeldentifier

TypeSpecification

:: = Stmt I StmtList; Stmt

:: = + I .
:: = LENGTH [LeftSide] I BASE [LeftSide] I

DESCRIPTOR [Expression] I
DESCRIPTOR [Expression , Expression]
SIZE [TypeSpecification]

::= Sum

:: = Expression I ExpressionList, Expression I

:: = - Primary I Primary

:: = Expression .. Expression I Expression ! Expression

:: = identifier I Literal I MEMORY [Expression] I
LeftSide Qualifier I (Expression) Qualifier I
identifier $ identifier I numeric Literal $ identifier

:: = numericLiteral I
stringLiteral I .. all defined outside the grammar
characterLiteral

:: = * I / I MOD

:: = LeftSide I (Expression) I @ LeftSide I BuiltinCall

:: = Factor I Product MultiplyingOp Factor

:: = . identifier I t I % I % TypeSpecification I [ExpressionList]

:: = Expression I LeftSide +- Expression I MEMORY [Interval]
LeftSide [Interval] I (Expression) [.Interval]

:: = Product I.Sum AddingOp Product

:: = @ TypeSpecification

:: = INTEGER I BOOLEAN I CARDINAL I
CHARACTER I STRING I UNSPECIFIED I
identifier I identifier $ identifier I
identifier Typeldentifier

:: = Typeldentifier I TypeConstructor

18

Output Conventions 19

Section 5: Output Conventions

The debugger uses information about the types of variables to decide on an appropriate output
format. In general, compile- time constants are not displayed (with the exception of 0 i sp 1 ay
Va ri ab 1 e). Listed below are the types which the debugger distinguishes and the convention used
to display instances of each type.

ARRAY, ARRAY DESCRIPTOR

displays the first, second and last values of the array, unless the number of clements is
"small", e.g., a=(10)[Vector[x: 0. y:O], Vector[x: 1, y: 1], ...• Vector[x: 9,
y: 9]]. The parenthesized value to the right of the "=" is the length of the array.

BOOLEAN

displays TRUE or FALSE. Since BOOLEAN is an enumerated type = {FALSE, TRUE}, values
outside this range are indicated by a ? (probably an uninitialized variable).

CHARACTER

displays a printing character (c) as 'c. A control character (X) other than BLANK, RUBOUT,

NUl, TAB, LF, FF, CR, or ESC is displayed as l' X. Values greater than 177 B are displayed in
octal.

ENUMERATED

INTEGER

POINTER

PORT

displays the identifier constant used in the enumerated type declaration. For example, an
instance c of the type ChannelState: TYPE = {disconnected, busy, available} is displayed
as c=busy. If the value is out of range (probably an uninitialized variable), a ? is
displayed.

always displays a decimal number. Uniformly, numeric output is decimal unless
terminated by "B"(octal}.

displays an octal number, terminated with an "1''', i.e., p=107362B1'.

displays two octal numbers, i.e., p = PORT [0, 172520B].

PROCEDURE, SIGNAL, ERROR

displays the name of the procedure (with its local frame) and the name of the program
module in which it resides (with its global frame), e.g., GetMyChar, L: 165064B (in
Call ectParams, G: 1665148). Procedure variables which do not contain valid

Output Conventions 20

descriptors generate a"?".

PROCESS

RECORD

STRING

displays a ProcessHandle (pointer to a ProcessStateBlock)~ i.e.~ p = PROCESS [2002B].
See the process section of the Niesa System Documentation for further details.

the record's type identifier is followed by a bracketed list of each field name and its
value. For example~ an instance v of the record Vector: RECORD [x,y: INTEGER] is
displayed as v=Vector[x: 9, y: -1].

displays the name of the string~ followed by its current length~ its maximum length~ and
the string body~ e.g.~ s = (3, 10) "foo". If the string is longer than 60 characters, the first
40 and the last 10 are displayed. If the string is NIL, S = NIL is displayed.

SUBRANGE

displays an octal number if the upper limit exceeds 777778, decimal otherwise.

Signal and Error Messages 21

Section 6: Signal and Error Messages

The following messages are generated by the debugger. Wherever possible, there is also an
explanation of what might have caused the problem and what you can do about it.

Breakpoints

not allowed here!

An attempt was made to set a breakpoint on an opcode on which it is not allowed (check
the code for your progratn).

does not return!

An attempt was made to set an exit breakpoint on a procedure in which the return
statement is not in the correct location (check the code for your program).

Breakpoint not found!

You have swapped to the debugger when the breakpoint information (frame, pc, etc.)
cannot be found (check the code for your program).

Command Execution

aborted

Execution of the current command has been aborted (tDEL has been typed).

!Command not allowed

Execution of the current command is not allowed since the loadstate (source of debugger
bcd information) appears to be invalid.

Core image not healthy, can't swap!

You may only Quit or terminate the session (Kill session) after the debugger has been
bootloaded.

Displaying the stack

No previous frame!

The end of the stack has been reached.

Signal Hnd Error Messilges 22

No symbol table. for nnnnnnB

The symbol table file corresponding to the frame nnnnnnB is missing; any attempt to
symbolically reference variables in this module will fail. (In general, this message is a
warning.)

Entering the debugger

Debugger Bootloadedl

Appears at the top of the DEBUG.TYPESCRIPT window after you lUlve booted from the
MESADEBUGGER file (by typing Bootfrom MesaDebu.gger to the Alto Executive). This
gets you into the debugger and allows you to look at what was going on. However, you
may not proceed after the debugger has been bootloaded.

Fatal System Error (Punt) *

Appears when the system can no longer continue, often a result of running out of
memory or frame space. (The most helpful thing for you to do at this point is to
D i sp 1 ay Stack for several levels and look at the variables to try to figure out what was
going on.)

Interrupt III ••

Appears at the top of the DEBUG.TYPESCRIPT window after you have entered the debugger
via interrupt mode. .

ResumeError!

You have attempted to continue execution from an ERROR. This may occur both in the
situation described below or as the result of a programming error. (The debugger does
not support resuming SIGNALS which return values.)

uncaught SIGNAL 50S (in MayDay)

The user program has raised a SIGNAL (ERROR) which no one dynamically nested above the
SIGNAL invocation was prepared to catch. The debugger prints the name of the SIGNAL, lists
its parameters (if any), creates a new instance of the debugger, and gives control to the
command processor. At this point you may, for example, display the stack to see who
raised the uncaugh t SIGNAL

If the semantics of the situation permit, you may proceed execution at the point of the
SIGNAL'S invocation by issuing a Proceed command. Alternatively, you retire to the
dynamically enclosi ng instance of the debugger by issuing a Qu i t command. If the SIGNAL

actually w.as an ERROR and you elect to Proceed, you get a ResumeError.

IlltcrI)rcter

Invalid Type.
Invalid Expression.
Invalid Character.
Inval id Number.
Not Implemented.

Sigmll and Error Messages 23

The interpreter has been given an invalid expression.

Parmneters

is an invalid identifier!

The first character of your identifier is not an upper or lower case letter of the alphabet.

!Number

An invalid number has been typed.

!String too long

The string you have just typed is too long. String parameters are subject to the following
restrictions: identifiers and string constants are limited to 40 characters, source- text
parameters are limited to 60 characters, and conditions and expressions are limited to 100
characters.

Symbol Lookup

!xyz

The variable named xyz has not been found.

!File: xyz

The file named xyz has not been found.

!File: --compressed symbols--

The symbol file has been compressed.

has incorrect version!

The symbol file has an incorrect version stamp.

!String: xyz

The search for the string xyz has failed.

Validity checking

is not a frame!
is not a global frame!
is a clobbered frame!
has a NULL returnlink!
has a clobbered accesslink!
is an invalid ProcessHandle!
is an invalid image file!

The structure in question appears to be clobbered (invalid in some way).

Dcbuggcr Summary

Version 4.0

AScii read [address, n]

ATtach Image [filename]

Sy mbols [globalframe, filename]

Break Entry [proc, condition]

Mod ule [module, condition, source]

Procedure [proc, condition, source]

Xit [proc, condition]

CAse off [confinn]
on [confinn]

CLear All Breaks [confirm]
Entry traces [module]

Traces [confirm]
Xit traces [module]

Break [proc, source]

Entry Break [proc]

Trace (proc]

Module Break [module, source]

Trace (module, source]

Trace [proc, source]

Xit Break [proc]

Trace [proc]

COremap [confinn]
CUrrent context
Display Configuration

Eval- stack
Frame (address]

GlobalFrameTable
Module [module]

Process [process] - n,p,q, r,s
Queue rid]

Stack - j,n,p,v,r,s,q
Variable [id]

Find variable [id]

Inte rpret Array (array, index, n]

Call [proc]

De- reference [ptr]

Expression [exp]

Pointer [address, type]

String [string, index, n]

@ (var]

Kill session [confinn]
List Breaks [confirm]

Configurations [confirm]
Processes [confirm]
Traces [confirm]

Octal Clear break [globalframe, bytepc]

Read [address, n]

Set break [globalframe, bytepc]

Write [address, rhs]

Proceed [confirm]
Quit [confinn]
Reset context [confirm]
SEt Configuration [config]

Module context [module]

Octal context [address]

Process context [process]

Root configuration (config]

STart (address] .

Trace All Entries [module]

Xits [module]

Entry [proc,condition]

Module [module, condition, source]

Procedure [proc, condition, source]

Xit [proc, condition]

Userscreen [confirm]
Worry off [confirm]

on [confirm]
- - (comment]

StmtList

AddingOp

BuiltinCall

Expression

ExpressionList

Factor

Interval

LeftSide

Literal

MultiplyingOp

Primary

Product

Qualifier

Stmt

Sum

TypeConst IUcto r

Typeldentifie r

TypeSpecification'

.. -

.. -

.. -

.. -

.. -

Debugger Interpreter Grammar
Version 4.0

Stmt I StmtList; Stmt

+ I .
LENGTH [LeftSide] I BASE [LeftSide] I
DESCRIPTOR [Expression] I
DESCRIPTOR [Expression , Expression]
SIZE [TypeSpecification]

Sum

Expression I ExpressionList, Expression I
• Primary I Primary

Expression .. Expression I Expression ! Expression

identifier I Literal I MEMORY [Expression] I
LeftSide Qualifier I (Expression) Qualifier I
identifier $ identifier I numericLiteral $ identifier

numericLiteral I
stringLiteral I .. all defined outside the grammar
characterLiteral

* I / I MOD

LeftSide I (Expression) I @ LeftSide I BuiltinCall

Facto r I Product MultiplyingOp Facto r

. identifier I t I % I % TypeSpecification I [ExpressionList]

Expression I LeftSide ~ Expression I MEMORY [Interval]
LeftSide [Interval] I (Expression) [Interval 1
Product I Sum AddingOp Product

@ TypeSpecification

INTEGER I BOOLEAN I CARDINAL I
CHARACTER I STRING I UNSPECIFIED I
identifier I identifier $ identifier I
identifi~r Typeldentifier

Typeldentifier I TypeConstructor

Windex Sunlmary
Version 4.0

WHAT WINDEX MOUSE BUTTONS DO:

RED
YELLOW
BLUE
YELLOW/BLUE

MENU COMMANDS:

Create [window]
Destroy [window]
Move [window]
Grow [window]
Load [selection, window]
Stuff It [selection, window]

Scroll Bar

ScrollUp
Thumb
ScrollDown
NormalizeSelection

WHAT MENU MOUSE BUTTONS DO:

Text Area

Select/Extend characters
Select/Extend words
Menu Commands

Find [selection, window]
Set Brk [selection]
Clr Brk [selection]
Set Trc [selection]
Set Pos [index, window]
Keys On/Off

RED
BLUE

"Do it" - in this window/at this spot
Reset to previous state

WHAT KEYSET BUTTONS DO:

BS DEL

DURING TYPE· IN:

ESC

Backspace character
Backspace word

CR STUFF IT

BS
CONTROL-W
FL4 Stuff current selection into default window

Close connection [confirm]
DElete filename [filename]

Fetch Command Summary

DUmp from remote file [dumpfile]
Free pages
List remote file designator [filelist]
LOad from remote file [dumpfile]
Open connection [host, directory]
Quit [confirm]
Retrieve filename [filename]
Store filename [fiI~name]

(ERDX

Inter- Office Melilorandunl

To Mesa Users Date May 31, 1978

From Barbara Koalkin location Palo Alto

Subject Debugger - Extended Features Organization SDD/SD

Filed on: [IRIS] <MESA> DOC>XDF.BRAVO

There are three extended features available with the Mesa 4.0 debugger on an experimental
basis. One of these provides access to }-olP to allow a user to retrieve files from remote
locations from within the debugger. Another new debugger command allows a user to
invoke a special debugging package. The window manager (WindEx) has been expanded in
an attempt to extend the user interface to the debugger. Each feature is described below in
further detail. We encourage feedback on these features and remind you that due to their
experimental nature, they are subject to change.

Debugger FTP

The Mesa 4.0 debugger has the capability to invoke a subset of the standard ri'P commands
from within the debugger environment without having to exit to the Alto Executive. The
debugger's FTP command is built on top of the standard Mesa FTP package and therefore
any comments and/or problems regarding FTP itself should be addressed to the SDD
Communications Group. l' Ftp (cont ro l-F) enables the following commands (see the }.'TP
documentation for further details):

Close connection [confirm]

closes the currently open rIP connection.

DElete filename filename

tries to delete filename from the local disk. regardless of whether the file is in use. If it
finds it impossible to delete the file due to some of its own pointers that would be left
d angling, it does not allow you to do so (e.g., you cannot delete XDEBUG.IMAGE). Beware of
your own references!

DUmp to. remote. f i 1 e dumpfile

bundles together a group of files from the local file system into a 'dump format' file and
stores the result as dump file. vrp asks you for the names of the local files to be included.
Terminate the dump by typing a carriage return (CR).

Free pages

tells you how many free pages are left on your disk.

Debugger • Extended Fentures 2

LIst remote file designator filelist

lists all files j n the remote host corresponding to filelist. This must conform to the file
naming conventions on the remote host. You may designate multiple files by the use of H*"
expansion.

LOad f rom remote f i 1 e dumpfile

performs the inverse operation of DUmp, unbundling a dump- format file in the remote
system and storing the constituent files in the local file system.

Open connect ion host, directory

opens a connection to the FTP Server in the specified host and (optional) specified
directory.

Quit [confirm]

takes you out of fiP mode and returns you to the debugger command processor. The
debugger closes your connection when you leave l-iP, if you have forgotten to do so.

Retrieve filename filename

transfers filename from the remote host to the local host. The filename must conform to
the file naming conventions on the remote host. You may designate multiple files by the
use of "*" expansion if the remote server supports them (currently Maxc and IFS do). Note
that the byte count is. printed out truncated to 16 bits.

Store fi 1 ename filename

transfers filename from the local host to the remote host. Alto filename conventions apply
to the local file;· H*" expansion is not supported.

Warning: Be careful not to change any files out from under the program you are debugging;
the debugger makes no provisions for checking this when you ask to delete or update a
local file! -

In order for you to be able to use the FTP commands, you must retrieve the file FETCH.BCD

and load it into your debugger. This may be done when you are installing your debugger, in
the same way as installing the window manager. Once you are inside the debugger nub,
before you install, type New· FETCH which will load the Frp package. You may later
invoke FTP at any time by typing control-F to the debugger. If you wish to load the FTP
package at some later time, simply enter the debugger nub (control-D) and then load
FETCH. If you do not have the r"TP package loaded, you may still use the De 1 ete, Free
pages, and Qu i t commands. However trying to use any of the other FTP commands will
give you the message H __ FTP not installed".

Debugger User Procedures

The new tUserProc (control-U) command allows you to load a debugging package into
the debugger and invoke it at any time sfmply by typing control-U. The mechanism for
loading is the same as for loading the window manager. SimpJy enter the debugger nub;
then do a > New YourOwnFileName, foltowed by an (optional) S ta rt. Your program must

Debugger - Extended Features 3

IMPORT DebugUtilityDefs and make a call to:

AddCommand: PROCEDURE [tag: STRING, proc: PROCEDURE].

which expects the name of the command and the procedure to call when this command is
invoked.

Internally, things work as follows: When a user makes a call to AddCommand, the procedure
gets added to the list of user procs that have already been loaded. When the tUse rP roe
command is invoked, the debugger looks to see if there have been any procedures loaded. If
there is only one, it will be invoked automatically. If several user procs have been loaded,
typing "?" displays a list of the available commands. The message" ! No use r p roes. " is
displayed if the debugger can't find any procedures that have been loaded.

The debugger gives you added help in gaining more access to the information it already
knows about your programs. Taking advantage of the configuration format for grouping
modules, the debugger's configuration EXPORTS all of the debugger's interfaces:
DebugBreakptDefs, DebugConfigDefs, DebugFtpDefs, DebuggerOefs, DebuglnterpretDefs,
DebugMiscDefs, and DebugUtilityDefs. A user program can get access to any of the
debugger's PUBLIC procedures simply by IMPORTing the definitions modules of the procedures
that you want to use. When writi ng your own debugging routines, look carefully at some of
the utility routines that the debugger already provides (eg., ModuleNameToFrame,
FrameToModuleName, SREAD, etc.). You should also look at the < MesaLib) directory for
UserProcs that other Mesa users have already written and debugged.

Warning: The Al esa Group makes no guarantees about the stability of these interfaces. Use
at your own risk!

Window manager

The new window manager (WindEx) has the ability to handle long files (over 64K
characters), set breakpoints by selecting, position a file in a window using a character index,
and (optionally) use the keyset as an input device. Several bugs have been fixed and
performance has been improved. . The documentation that follows is the complete
documentation for WindEx.

Loading WindEx

To load WindEx, execute a New - Sta rt sequence on the file WINDEX.BCD before installing the
debugger. Alternately, you may enter the debugger nub at some later time (using eontrol
D) and load WindEx. You may also load WindEx from the command line by typing XOebug
WindEx/I to the Alto Executive which loads WindEx when installing the debugger
(additionally, you can use the L switch to load WindEx with code links to save space).

Current window

Using WindEx, the concept of "the current window" is clearly visible. A window is current
until the cursor is moved to another window and a mouse button is clicked. As a result, a
window is not repainted until it is made current. After any action is taken, the current
window is repai nted and its selection is updated.

Debugger • Extended }i'eaturcs 4

Text area

Selections arc made by depressing either the RED or YELLOW mouse buttons while in the text
area. RED selects a character and extends selections by characters; YELLOW selects a word
and extends selections by words. Characters typed into a scratch window are automatically
selected as they are typed.

Scroll bar

The scrolling commands are activated by moving the cursor into the scroll bar (left margin
of a window) and clicking some combination of mouse buttons. In all cases, scrolling is
acti vated when the mouse buttons are released. Moving out of the scroll bar before releasing
the buttons returns you to text selection mode without' repositioning the file. The
thermometer in the scroll bar shows the current position of the window in the file. The
positioning commands arc as follows:

scrolling up [RED button]
moves the line next to the cursor to the top of the window.

relative scrolling [YELLOW button]
moves to the position in the file corresponding to the relative position of the cursor
in the scroll bar (a]so called "thumbing").

scrolling down [BLUE button]
causes the line at the top of the window to be moved next to the cursor.

normal izc selection [YELLOW and BLUE buttons]
causes the line containing the current selection to be moved next to the cursor.

Menu Commands

When the BLUE mouse .button is pressed in the text area of a window, the WindEx menu
appears and the cursor changes to a left arrow. Select a menu command by pointing at it
(causing it to video reverse) and releasing the mouse button. If you do not wish to execute
the command, release the cursor outside the region of the menu. In all cases (except where
otherwise noted below) clicking the RED mouse button causes the command to be executed;
clicking the BLUE mouse button resets the window to its previous state. A fter seeing the
menu, if you do not wish to execute a menu command, just move the cursor away frOln the
menu and release the BLUE mouse button. The menu commands are as follows:

Create

creates a new scratch window (that accepts keyboard input) at the place selected by clicking
RED. Note that a maximum of rour scratch windows may exist at the same time.

Destroy

destroys the window selected by moving the bullseye cursor into a window and clicking RED.
Note that windows belonging to the debugger cannot be destroyed by the user.

Debugger • Extended Fe~ltllres 5

Move

changes the position of the current window; the window sticks to the cursor as it is moved
around. Clicking RED positions the upper-left hand corner of the window to the cursor
location; clicking BLUE returns the window to its previous position.

Grow

changes the size of the current window; the lower right- hand corner of the window sticks to
the cursor and the window turns gray. Clicking RED fixes the size of the window (subject to
the minimum size restriction); clicking BLUE resets the window to its previous size.

Load

loads a file into the window selected by clicking RED, using the selection of the current
wi ndow as a filename. Alternately, if you type a filename terminated by the escape
character (ESC) into a scratch window, the window is automatically loaded with that file.
Note that the user cannot load into the window containing DEBUG.TYPESCRIPT or any other
windows belonging to the debugger.

Stuff It

takes the selection of the current window and stuffs it into the input stream of the window
selected by clicking RED. The lower left function key on Alto II keyboards (FL4) stuffs the
current sclection into the default window (the debugger's. typescript).

Find

finds the selection of the current window in the window selected by clicking RED. The
search begins at the end of the selection of the window being searched. If the search is
successful, the text becomes the new selection and is scrolled to the top of the window;
otherwise, the selection remains the same.

Set Brk

uses the selection of the current window to set a breakpoint. If you select the word
"PROCEDURE", a breakpoint is set on the entry to the procedure; if you select the word
"RETURN", a breakpoint is set on the exit of the procedure; otherwise a breakpoint is set at
the closest statement enclosing the selection. Confirmation is given by the selection being
moved to the place at which the breakpoint is actually set. The window must contain the
source file for a module in the current configuration; in the case of mUltiple instances of a
module, the name of the current context lTIUst be the same as the source file.

Cl r B rk

clears the breakpoint or tracepoint as specified above.

Set Tre

sets a tracepoint as specified above. Con firmation is gi ven by the selection being moved to
the place at which the tracepoint is actually set.

Dcbuggcr • Extcndcd lfcaturcs 6

Set Pos

takes the selection of the current window as a character index and positions the file in the
window selected by clicking RED to that character position.

Keys On/Off

activates/deactivates input from the keyset as described below.

When WindEx is actively working on a command, the cursor is in the shape of hourglass.
When it is done with the current task, the cursor returns to its normal shape.

Keyset

The keyset can be used as an additional source of text input to WindEx. Keyset chords are
described as octal numbers with 1 B corresponding to the rightmost key and 20B to the
leftmost. The key set forms a chord by oRing an keys depressed and returns the chord when
all keys are released. lJe careful not to have any books all the keyset when it is active!

Keyse/ Commands

The keyset commands involve stuffing characters and selections into the default window
(which is the DEBUG.TYPESCRIPT window when WindEx is loaded with the debugger). In all
cases, the default window is made the current window at the end of the command. The
keyset commands are as follows:

III stuffs the selection of the ·current window ..

·2ll stuffs a carriage return (CR).

3D stuffs the selection of the current window followed by a CR.

4ll stuffs an escape (ESC).

lOll stuffs a delete (DEL).

20B stuffs a backspace (BS).

Keyset Input

Holding down the RED and YELLOW mouse buttons puts the keyset into text input mode.
For each chord typed, the corresponding character is put into the input stream of the current
window. The characters supported are 'A .. 'Z (1B .. 32B), '+ (33B), BS (37B) .. Attached is a label
that can be taped to your keyset and used as a guide to the appropriate codes.

Debugger . Extended Features 7

A x J x . x S x x x
B x K x . x x T x x
C x x L x x U x x x
0 x M x x x V x x x
E x x N x x x W x x x x
F x x 0 x x x x X x x .
G x x x P x Y x x . x
H x Q x . x Z x x . x
I x x R x x . + x x x x

BS DEL ESC CR STUFF

