Mesa Debugger Documentation

Version 4.0
May 1978

The facilities documented here are the workings of an interactive Mesa debugger. It has
been designed to support source level debugging; it provides facilities that allow users to set
breakpoints, trace program execution, display the runtime state, and interpret Mesa

statcments.

XEROX

SYSTEM DEVELOPMENT DIVISION
3408 Ilillview Avenue / Palo Alto / California 94304

This document is for intemal Xerox use only.

Preface
May 1978

The facilities documented here are the workings of an interactive Mesa dcbugger. It has been
designed to support source level debugging; it provides facilities that allow users to set
breakpoints, trace program cxecution, display the runtime state, and interpret Mesa statements,
Due to the space required to provide all of these capabilities, the Mesa debugger lives a core swap
away from the program being dcbugged.

This documentation is divided into six parts. Secction 1 is an overview, Section 2 explains the
debugger’s input conventions and contains a summary of the command tree structure, Section 3
cxplains the semantics of each command, Scction 4 cxplains the dcbugger interpreter, Section 5
cxplains the debugger’s output conventions, and Section 6 cxplains the signal and error messages.
The Mesa User’s Handbook contains further details on how to obtain, install, and use the
debugger.

The Mcesa debugger is intended for use by experienced programmers alrcady familiar with Mesa.
All suggestions as to the form, correctness, and undcerstandability of this document should be sent
to your support group. All of us involved in the devclopment of Mesa welcome feedback and
suggestions on debugger development.

Mcesa Debugger - Documentation 2

Section 1: Overview

The debugging and runtime facilitics differ in their relationship to the user program. When you
invoke Mecsa, the Mesa Executive is the code necessary for your program to communicate with
the debugger and resides along with the user program. It also scrves the function of an exccutive
when the Mesa system is first started (see the Mesa System Documentation for further details),
The debugger resides in a differcnt core image which is loaded when called for (in very much the
same way as Swat). The debugger nub is uscd for installing the debugger and primitive debugging
opcrations (Scction 3 contains further dctails).

Invoking the dcbugger

At system start-up, the Mesa Executive is given control in a context from which all the various
system utilitics are visible. At this point there arc several ways of invoking the debugger. The
straightforward mecthod is to issuc thc Debug command to the Mesa Executive; this brings you
into the debugger, ready to cxecute a command. If you wish to center the debugger at any time
(i.c., while your program is running), +SWAT interrupts your program. (Note that if you really get
in trouble +SHIFT- SWAT brings you into Swat, at which point you may boot the machine and re-
enter the dcbugger. Scction 6 contains further dctails on bootloading the debugger.)

In the course of running your program, you may enter the debugger for scveral other reasons,
including an uncaught signal generated by your program, exccution of a breakpoint/tracepoint
that has been placed in your program, or a fatal system crror that forces your program to abort
(Scction 6 contains further details on the messages displayed when entering the debugger in these
situations).

Talking to the dcbugger

The user interface to the dcbugger is controlled by a command processor which invokes a
collection of procedures for managing brecakpoints, examining user data symbolically, and sctting
the context in which user symbols are looked up. The command syntax is tree structured and
cach character is cxtended to the maximal unique string which it specifies.

Whenever an invalid character is typed, a ? is displayed and you are returned to command level.
Typing a ? at any point during command sclection prompts you with the collection of valid
characters (in upper case) and their associated maximal strings (in lower casc) and returns you to
command level. Whenever a valid command is recognized, you are prompted for parameters
(Section 2 contains further details on the input conventions). Typing DEL at any point during
command sclection or parameter collection returns you to the command processor; typing tDEL at
any point during command cxecution aborts the command.

When initialized, the debugger creates three windows: the DEBUG.TYPESCRIPT window (which
becomes a log of the debugging scssion), a source window (which is loaded with the source file
when breakpoints arc set or the source location is requested), and a local copy of the
MESA.TYPESCRIPT window (for casy rcference). These windows may be manipulated by installing
the window cxccutive (WiNDEX) with your dcbugger (sce the Mesa User's Handbook for further
dctails).

Mesa Debugger Documentation 3

Current context

The interpretation of symbols (including displaying variables, sctting breakpoints, and calling
procedurces) is based on the notion of the current context; it consists of the current frame and its
corresponding module, configuration, and process. The symbol lookup algorithm used by the
debugger is as follows: it searches the runtime stack of procedure frames in LIFO order by
examining first the local framec of cach procedure (and then its associated global frame)
following return links, until the root of the process is encountered.

When you first enter the debugger, the context is sct to the frame of whatever process is currently
running (i.e., to the Mesa Executive, if you cnter via the Debug command; to your program, if it
is interrupted or at a breakpoint). There arc commands which make it simple to change between
contexts (SEt Context), to display the current context (CUrrent context), and to examine the
current dynamic state (Display Stack).

Leaving the dcbugger

Once you are in the debugger, you may execute any number of commands that allow you to
examine (and change) the state of your program. When you are finished, you may dccide either
to continue cxccution of your program (Proceed), terminate execution of your program (Quit),
or end the debugging session completely and return to the Alto Executive (Kil1l session).
Scction 3 contains further details on these commands.

Input Conventions : 4

Scction 2: Input Conventions

The input conventions of the debugger’s command processor arc summarized below, along with
the trec for the command syntax. The command processor prompt character is ">" for the
debugger and "/" for the debugger nub (actually, the character is repecated once for each nesting
level of the debugger). Whenever a valid command is recognized, the debugger prompts for the
paramecters associated with that command (if any are rcquired) according to the conventions
described below. Typing DEL terminates the command; ? gives a list of valid commands. When a
command requires a [confirm] (CR), the decbugger enters wait-for- bEL mode if an invalid
character is typed.

String input

Identifiers are sequences of characters beginning with an upper or lower case letter and
terminating with a space (sP) or a carriage return (CR). Type namecs arc accepted as either
modulename.type or simply a valid type name terminated by CR. Source text and conditions
(for sctting breakpoints) must be terminated by CR since spaces (SP) are significant in these
strings. The dcbugger cchoes a delimiting character of its own choice in order to minimize loss
of information from the display.

Numeric input

A numeric parameter is a sequence of characters terminated by sP or CR which is processed by a
very simple cxpression parser; it accepts constants in cither octal or decimal and the operators
+ -, * /. Evaluation is strictly left-to-right with no precedence or parentheses allowed. All
forms of numeric constants allowed by the Mesa syntax arc accepted. The default radix is octal
for addresses (and input to octal commands) and decimal for everything else (unless otherwise
specified in Section 3). Use the "p" suffix to force decimal interpretation and "B" to force octal.

Default values

The debugger saves the last values used as parameters to all of the commands; these values may
be recalled by the escape key (esc). The following parameters have default values which may be
used or inspected by typing £sc: octal read address, octal write address, ascii read address,
module, configuration, root configuration, variable, procedure, program, array, array index, string,
string index, type, source, condition, expression, process, address, and frame. After the default
paramcter is displayed by the debugger, the standard input editing characters may be used to
modify it. The EscC values for octal recad/write addresses (as well as string and array indices) are
incremented after cach use. Typing ESC to the command processor uses the last command ‘as the
dcfault command (i.c., you reccive the prompt for the paramecters, if any, for the previously
exccuted command).

Editing characters

The standard cditing characters accepted as input arc: CONTROL- A, CONTROL-H, or BS to dclete a
character; CONTROL-W or CONTROL-Q to delete a word; CONTROL- X to delete a linc; CONTROL-R to
retype a line; and cCoNTROL-v to quote the next character.,

Input Conventions 5

Command Tree

This is the command tree structurce for the Mcsa debugger, Capitalized letters arc typed by the
user (in cither upper or lower case); the lower case substrings are cchoed- by the command
processor. Each command is described in Section 3 along with its parameters.

AScii read Ki11l session
ATtach Image List Breaks
Symbols Configurations
Break Entry Processes
Module Traces
Procedure Octal Clear break
Xit Read
CAse off Set break
on Write
CLear Al11 Breaks Proceed
Entry traces Quit

Traces Reset context
Xit traces SEt Configuration
Break Module context
Entry Break Octal context
Trace Process context
Module Break Root configuration
Trace STart
Trace Trace A1l Entries
Xit Break Xits
Trace Entry
COremap Module
CUrrent context Procedure
Display Configuration Xit
Eval-stack Userscreen
Frame Worry off
GlobalFrameTable on
Module -- comment
Process
Queue
Stack
Variable

Find variable
Interpret Array
Call
De-reference
Expression
Pointer
String
Q

Dcbugger commands 6

Section 3: Dcbugger commands

The dcbugger provides facilities for managing breakpoints, cxamining uscr data symbolically,
sctting the context in which the user symbols are looked up, directing program control, low-level
utilitics, and a debugger nub uscd for installing (and decbugging) the debugger itself. The
scmantics of the commands are summarized below (Section 2 contains further details regarding
input conventions and Section 5 contains dctails of output conventions),

Breakpoints

The break/trace commands apply to modules and procedures that are known within the current
context. All breakpoints/tracepoints may optionally be conditional. If you type a sp after the -
module (or proccdure) name, you rcccive a prompt for the condition; if you type a CR it
terminates the command input (in the case of entry/exit breaks) or prompts for the source (in
the case of text breaks). All of the breakpoint commands accept a valid GlobalFrameHandle as
input when prompted for a module name.

The three valid formats of a condition are: variable relation variable, variable relation number, and
number (multiple procceds). Conditions include relations in the set {<, >, 5 # <5 >=}. The
variables are intcrpreted expressions and are thereforc looked up in. the current context.
However, if you are in a module context and wish to specify a local variable of the procedure
you arc sctting the breakpoint in, proc.var may be used.

You may set break or tracepoints at the following locations in your program: entry (to a
procedurc), exit (from a proccdure), and at the closest statement boundary preceding a specific

. text location within a procedure or module body. When a break/trace is encountered during

execution, the debugger types the name of the body being broken, the text corresponding to that
code location, and the address of the currently active frame; it also positions the source window
with the breakpoint source at the top.

Break Entry [proc, condition]

inserts a breakpoint (optionally conditional) in the procedure proc at the first instruction
after the code which stores the input parameters in proc’s frame (sece Break Procedure
for further details).

Break Module [module, condition, source]

sets a breakpoint (optionally conditional) in the program body namcd module at the
beginning of the statement defined by the line containing the first instance of the string
source. The scarch for source commences at the beginning of the module and cxtends to
the cnd-of-file (scc Break Procedure for further dectails).

Break Procedure [proc, condition, source]

scts a breakpoint (optionally conditional) in the procedurc body namecd proc at the
beginning of the statecment containing the firs¢ instance of the string source. The search
for source commences at the beginning of the text for proc and cxtends to the end-of-
" file. When the breakpoint is set, the indicator <> appcars to the left of the source where

Debugger - commands 7

Break

CLear

CLear

CLear

CLear

CLear

CLear

CLear

CLear

CLear

ClLear

the breakpoint has actually been set (i.e, IF foo THEN <> some statement;).

When a breakpoint is encountered during cxccution, a ncsted instance of the debugger is
created and control transfers to the command processor, from which you may access any
of thc facilities described in this document. To continuc cxccution of your Mesa
program, cxecute thc Proceed command; to stop exccution of your program, cxeccute the
Quit command (sce the Breakpoints cxplanation for further dectails).

Xit [proc, condition]

inscrts a breakpoint at the /ast instruction of the procedure body -for proc (sece Break
Procedure for further dctails). Note: this catches all RETURN statcments.

A11 Breaks [confirm]

clears all breakpoints.

A1l Entry traces [module]
removes all entry traces in module.
A1l Traces [confirm]

clears all tracepoints.

A1l Xit traces [module]
removes all exit traces in module.
Break [proc, source]

converse of Break Procedure.
Entry Break [proc]

converse of Break Entry.

Entry Trace [proc]

converse of Trace Entry.
Module Break [module, source]
converse of Break Module,
Module Trace [module, source]
converse of Trace Modu]e. -
Trace [proc, source]

converse of Trace Procedure.

Dcbugger commands 8

CLear

CLear

Xit Break [proc]
converse of Break Xit.
Xit Trace [proc]

converse of Trace Xit.

List Breaks [confirm]

lists all breakpoints, their type (entry, exit, source), and the procedure and/or module
name in which they are found. For source breakpoints, the source text is also displayed.

List Traces [confirm]

Trace

Trace

Trace

Trace

Trace

lists all tracepoints (cf. List Breaks).

A11 Entries [module]

scts a trace on the entry point to each procedure in module (cf. Trace Entry).
A1l Xits [module] |
scts a trace on the exit point of cach procedure in module (cf. Trace Xit).
Entry [proc, condition]

sets a trace on the entry point to the procedure proc. ‘When an entry tracepoint is
encountered, proc’s parameters are displayed and you are prompted with ">" (sce Trace
Procedure for further dctails).

Module [module, condition, source]

scts a trace in the program body named module at the beginning of the statement defined
by the line containing the first instance of the string source. The scarch for source
commences at the beginning of the module and extends to the end-of-file (sec Trace
Procedure for further dctails). -

Procedure [proc, condition, source]

scts a trace (optionally conditional) in the procedure body named proc at the beginning of
the statement defined by the line containing the first instance of the string source. The
search for source commences at the beginning of the text for proc and cextends to the end-
of-file.

When the tracepoint is rcached, you may respond to the "> prompt with the standard
replies (cf. Disptay Stack) for listing the parameters, return values, or local variables.
In order to continuc exccution, cxccute the Q (or q) subcommand. In addition to the
standard replics, you may also type B (or b) which crcates a ncsted instance of the
debugger and sends control to the command processor (as in breakpoints), from which
you may access any of the facilitics described in this document (sce thce Breakpoints
cxplanation for further dctails).

Debugger commands 9

Trace Xit [proc, condition]

scts a trace on the cxit of the procedure proc. When an exit tracepoint is encountered,
proc’s return values are displayed and you arc prompted with ">" (sec Trace Procedure
for further details).

Display runtime state

The scope of variable lookup is limited to the current context (unless otherwise specificd below
to be the current configuration). What this mcans is the following: if the current context is a
local frame, the dcbugger examines the local frame of each procedure in the call stack (and its
associated global frame) following rcturn links until the root of the process is encountered; if the
current context is a module (global) context, just the global frame is scarched. If the variable you
wish to examine is not within the current context, there are commands provided which change
between contexts. Upper/lower case distinction is not observed in looking up variables (you may
change this dcfault scttmg with the CAse command); however, case shifts arc always significant
in source strings used in sctting breakpoints.

In all commands (unless otherwisc specified below), variables are simple identifiers as
distinguished from expressions that arc evaluated by the debugger interpreter. As the interpreter
becomes more fully integrated into thc dcbugger, interpreted expressions will be valid for all
commands, and the Interpret commands will be removed from the debugger’s command
" processor.
AScii read [address, n]
displays n (decimal) characters starting at address (octal).
CAse off [confirm]
ignores the distinction between upper and lower case during symbol lookup. This is the
default statc when you enter the debugger, except that upper and lower case are always
significant in source strings for breakpoints (sec Display runtime state explanation).

CAse on [confirm]

observes the distinction between upper and lower case during symbol-lookup. Once set,
this state persists until you exccute a CAse off command.

Display Configuration
displays the name of thc current configuration followed by the module name,
corresponding global frame address, and instance name (if one exists) of cach module in
the current configuration.

Display Frame [address]

displays the contents of a frame, where address is its octal address (uscful if you have
scveral instances of the same module.)

Dcbugger commands 10

Display GlobalFrameTable

displays the modulc name and corresponding global frame address, pc, codebase, and gfi
of all entrics in the global frame table,

Display Module [module]

displays the contents of a global frame, where module is the name of a program in the
current configuration.

Display Process [process]

is a specialized version of Display Variable that displays interesting things about a
process. This command shows you the ProcessHandle and the frame associated with
process, and whether the process is waiting on a monitor or condition variable (waiting
ML or waiting CV). Then you arc prompted with a ">" and you enter process
subcommand mode. A responsc of N displays the next process in the array of psbs; S
displays the source text; R displays the root frame of the process; P displays the priority
of the process; and Q or DEL terminates the display and rcturns you to the command
processor. Note that cither a variable of type PROCESS (rcturned as the result of a FORK)
or an octal ProcessHandle is acceptable as input to this command (note that process is an
interpreted expression).

Display Queue [id]

displays all the processes waiting on the queue associated with id. For each process, you
enter process subcommand mode. The semantics of the subcommands remain the same as
in Display Process, with the cxception of N, which in this casc follows the link in the
process. This command accepts cither a condition variable, a monitor lock, a monitored
rccord, a monitored program, or an octal pointer (as in a pointer to the ReadyList). Note
that id is an interpreted cxpression; if id is simply an octal number, you are asked
whether it is a condition variable in order for the dcbugger to know where to find the
head of the qucue (i.c., Display Queue: 175034B, condition variable? [Y or NJ).

Display Stack

follows down the procedurc call stack. At ecach frame, the corresponding body’s name
and frame address are displayed. You are prompted with a '>”. A response of V displays
all the frame’s variables; P displays the input parameters; R displays the return values
(those which are "named” in thc RETURNS part of the body declaration); N moves to the
next frame; J, n(10) jumps down the stack n (decimal) levels (note that if n is greater than the
number of levels it can advance, the debugger tells you how far it was able to go); S displays the source
text; and Q or DEL terminates the display and rcturns you to the command processor.
When the current context is a global frame, the Display Stack subcommands J and N
are disabled. When the debugger cannot find the symbol table for a frame on the call
stack, only the J, N, and Q subcommands are¢ allowed. For a complcte description of the
output format, see Secction 5.

Display Variable [id]

displays thc contents of the variable named id, limiting the scope of its scarch to the
current context.,

Debugger commands 11

Find Variable [id]

displays the contents and module location of the variable named id, scarching through all
the modules in the currcnt configuration.

Interpret Array [array, index, n]
displays the valuc(s) of n (decimal) clements starting with array[index].
Interpret Call [proc]
calls the procedurc proc, after prompting for paramcters one word at a time. The
paramcters must be constants (the default radix is decimal) or simple identifiers. Note
that no typc checking is done.
Interpret De-reference [ptr]
chases the ptr one level. Note: ptr must be a pointer type.
Interpret Expression [exp]
evaluates exp using the simple numeric parser described in Section 2 and prints out the
value in octal and decimal. This can be used for quick calculations or for octal to
decimal conversions. :
Interpret Pointer [address, type]
symbolically. displays (according to the typc) the valuc(s) stored at location address. The
type should be the type of the data, rather than the type of the pointer; it may be of the
form modulename.type. In scarching for type, if the modulename is omitted, the debugger
first cxamines the current local frame and then the corresponding global frame and its
included modules.
Interpret String [string, index, n]
displays n (dccimal) characters of string beginning at index.

Interpret @ [var]

returns the address of var.

Current context

The current context is used to determine the domain for symbol lookup. There are commands
provided which make it simple to display the current context, to display all the configurations
and processes, to restore the starting context, and to change between contexts.

CUrrent context
displays the name and corresponding global frame address (and instance name if one

cxists) of the current module, the name of the current configuration, and the
ProcessHandle for the current process.

Debugger commands 12

List Configurations [confirm]

lists the name and instance name (if onc cxists) of cach configuration that is loaded,
beginning with the last configuration loaded. If you wish to sce more information about
a particular configuration, use the Display Configuration command.

List Processes [confirm]

lists all processes by ProcessHandle and frame. If you wish to sce more information
about a particular process, usc the Display Process command.

Reset context [confirm]

restores the context which this instance of the dcbugger had upon cntering the session.

SEt Configuration [config]

scts the current configuration to be config, where config is nested within the root
configuration that is current. This command is uscful for "jumping" further into the
nested block structure of a configuration.

SEt Module context [module]

changes the context to the program module whosc name is module (within the current
configuration). If there is more than one instance of module, the debugger lists the frame
address of cach instance and does not change the context. You may use the SEt Octal
context command to set the context to a frame address.

SEt Octal context [address]

changes the context to the frame whose address is address (cf. SEt Module context).
This is uscful when there are several instances of the same module.

SEt Process context [process]

SEt

sets the current process context to be process and sets the corresponding frame context to
be the frame associated with process. Upon cntering the debugger for the first time, the
process context is set to the currently running process. Note that cither a variable of type
PROCESS (returnced as the result of a FORK) or an octal ProcessHandle is acceptable as input
to this command.

Root configuration [config]

sets the current configuration to be config, where config is at the outermost level (of its
configuration). This command is sufficient for simple configurations of only onec level.
It is also .uscful in getting you to the outermost level of ncsted configurations, from
which you may move "in" using SEt Configuration.

Program control

There are commands provided which allow you to determine the flow of control between the
dcbugger and your program.

Debugger commands 13

Proceed [confirm]

continuecs cxccution of the program (i.c.,, proceeds from a breakpoint, resumes from an
uncaught signal).

Quit [confirm]

returns control to the dynamically cnclosing instance of thc dcbugger (if there is one).
Executing a Quit has the effect of cutting the runtime stack back to the necarest enclosing
instance of the debugger. Quitting from the outcrmost level of the decbugger returns you
to the Mesa Executive, Quitting from the Mesa Executive rcturns you to the Alto
Executive.

STart [address]

starts exccution of the module whosc frame is address. Unlike the language START
statcment, no parameters may be passed.

Userscreen [confirm]

swaps to the user world for a look at the screen, Control is rcturned to the debugger with
the sSwaAT key.

Low-level facilities

There are additional commands provided which allow the user to examine (and modify) what is
going on in the underlying system,

ATtach Image [filename]

specifics the filename to use as an image file when the debugger has been bootloaded. It
is uscful when ‘the user core image has been clobbered. The default extension for
filename is ".image".

ATtach Symbols [globalframe, filename]

attaches the globalframe to filename, This is useful for allowing you to bring in
additional symbols for dcbugging purposcs not initially anticipated. The dcfault
cxtension for filename is ".Dbed".

COremap [confirm]

prints the following information (in. octal) about the segments currently in memory:
memory page number, memory address, file page number (if it is a file), number of pages,
state {busy, free, data, file}, scrial number (if it is a file), class {code, other}, access
{Read, Write, Append}, lock. If thc class is code, the module name is also given. Typing
tDEL tcrminates the printout.

Display Eval-stack
displays thc contents of the Mcsa cvaluation stack (in octal), uscful for low-lcvel

dcbugging or for displaying the (un-named) return values of a procedurc which has been
broken at its cxit point. 'This command is only uscful when recaching octal breakpoints

Dcbugger commands 14

because the eval-stack is empty between statements.

Ki11 session [confirm]
ends your debugging scssion, clcans up the state as much as possible, and returns to the
Alto Executive. Use this command instecad of SHIFT-SWAT or the boot button to lcave the
debugger.

Octal Clear break [globalframe, bytepc]
conversc of Octal Set break. (Note: these ocfal commands are low-level debugging
aids for system maintainers who must diagnose the higher-level debugging aids and
system.)

Octal Read [address, n]
displays the n (dccimal) locations starting at address.

Octal Set break [globalframe, bytepc]
sets a breakpoint at the byte offset bytepe in the code segment of the frame globalframe.

Octal Write [address, rhs]

stores rhs (octal) into the location address; the default for rhs is the current contents of
address. '

Worry on [confirm] 4
taking a breakpoint in worry mode brings you into the debugger with the user core image
undisturbed (i.e., no cleanup procedures are invoked, no frames are allocated, and memory
is left unchanged). All of the debugger commands are allowed, with the exception of
Interpret Call, STart and Quit.

Worry off [confirm]
turns off wbrry mode (this is the decfault state upon ecntering the debugger).

--. [comment]

inserts a comment into the dcbugger’s typescript file. Input is ignored after the dashes
until a carriage return (CR) is typed.

tDebug [confirm]

invokes the debugger nub which prompts with a "//". Scc Debugger nub for further
dctails about thc capabilitics of the nub.

Dcbugger nub

The nub is a part of the debugger that contains primitive facilitics for debugging and installing
the dcbugger as well as providing a minimal signal catcher and interrupt handler. It is possible
to install a different version of the debugger to use for debugging the debugger itsclf (sce a

Dchugger commands 15

member of the Mesa Group if you arc intercsted in knowing more about how this works).
Typing tD (to the command processor of the debugger) brings you into the nub with a "//"
prompt. The following limited sct of commands ar¢ available in the nub: Bitmap, Install,
New, Octal Read, Octal Write, Proceed, Quit, and Start. The scmantics of Bitmap,
Install, and New arc cxplaincd below; the other commands have already been cxplained above.
Bitmap [n]

reallocates the bitmap to n (decimal) pages. The default upon starting is about 50 pages.
Install [confirm]

installs the current core image as the debugger.

New [[ilename]

is just like thc language statcment NEW.

Dchugger Interpreter 16

Section 4: Debugger Interpreter

The Mcsa debugger contains an interpreter that handles a subset of the Mesa language; it is uscful
for common opcrations such as assignments, dercferencing, indexing, ficld access, addressing, and
simple type conversion. It is a powerful extension to the current debugger command language, as
it allows you to more closely specify your variables while debugging, thus giving you more
complcte information with fewer keystrokes. A specific subsct of the Mesa language is
acceptable to the interpreter (sce below for details on the grammar). Several new notations
(abbreviations) have been introduced into the debugger interpreter grammar; note that these are
not part of the Mesa language itself (valid only for dcbugging purposes).

Statement Syntax

Typing space (sP) to the command processor enables interpreting mode. At this point the
debugger is rcady to interpret any expression that is valid in the (dcbugger) grammar.

Multiple statements are separated by semicolons; the last statement on a line should be followed
by a carriage rcturn (cR). If the statcment is a simple expression (not an assignment), the result is
displayed after evaluation.

For example, to perform an assignment and print the result in one command, you would type foo
« exp; foo. '

Loopholes

A more concisc LOOPHOLE notation has been introduced to make it casy to display arbitrary data
in any format. The character "%" is used to denote LOOPHOLE[exp, type], with the expression on
the left of the %, and thc type on the right.

For example, the expression foo % short red Foo means LOOPHOLE the type of the variable foo to
be a short red Foo and display its value.

Subscripting

There are two types of interval notation acceptable to the interpreter. The notation [a . . b]
means start at index a and end at index b. The notation [a ! b] mcans start at index a and end
at index (a+tb-1).

For example, the cxpressions MEMORY[4 . . 7] and MEMORY[4 ! 4] both display the octal contents
of memory locations 4 through 7. Note that the interval notation is only valid for display
purposes, and thcrefore is not allowed as a LeftSide or ecmbedded inside other cxpressions.

Module Qualification

To improve the performance of the interpreter, the $ notation has been introduced to distinguish
between module and record qualification. The character $ indicates that the name on the left is a
module, in which to look up the identificr or TYPE on the right. 1f a module cannot be found, it

Debugger Interpreter 17

uscs the name as a file (usually a definitions file). A valid octal frame address is-also accepted as
the left argument of $.

For cxample, FSP$TheHeap mecans look in the module FSP to find the value of the variable
TheHeap. In dcaling with variant rccords, be sure to specify the variant part of the record before
the record name itself (ic.,, foo % short red FooDefs$Foo, not foo % FooDefsgshort red Foo).

Type Expressions

The notation "@ type" is used to construct a POINTER TO type. This notation is used for
constructing typces in LOOPHOLEs (ic., @foo will give you the type PONTER TO foo).

Sample Expressions
Here are some sample expressions which combine scveral of the rules into uscful combinations:

If you were intercsted in sceing which procedure was associated with the third keyword of the
menu belonging to a particular window called myWindow, you would type:

myWindow.menu.array[3] .proc
which might give you the following output:
CreateWindow (PROCEDURE in WEWindows, G: 120134B).

The basic arithmetic operations are provided by the interprctér (with the same precedence rules
as followed by the Mesa compiler).

344 Mop 2 ; (3+4) mop 2
would produce the following output:

3
1.

Radix conversion between octal and decimal can be forced using the loophole construct; for
cxample, exp%CARDINAL will force octal output and exp%INTEGER will force decimal.

A typical scquence of expressions one might use to initialize a record containing an array of Foos
and display somec of them would be:

rec.array « DESCRIPTOR[FSP$AllocateHeapNode[n*size[FooDefs$Foo]], n];
InitArray[rec.array] ; rec.array][first..last] .

Debugger Interpreter

Grammar

StmtList = Stmt | StmtList; Stmt

AddingOp = +]|-

BuiltinCall = LENGTH [LeftSide] | Base [LeftSide] |
DESCRIPTOR [Expression] |
DESCRIPTOR [Expression , Expression] |
size [TypeSpecification]

Expression = Sum

ExpressionList Expression | ExpressionList, Expression |

Factor = - Primary | Primary
Interval = Expression .. Expression | Expression ! Expression
LeftSide = identifier | Literal | MEMORY [Expression] |
LeftSide Qualifier | (Expression) Qualifier |
identifier $ identifier | numericLiteral $ identifier
Literal = numericLiteral |
stringLiteral | -- all defined outside the grammar
characterlLiteral
MultiplyingOp u= *| /| MOD .
Primary = LeftSide | (Expression) | @ LeftSide | BuiltinCall
Product = Factor | Product MultiplyingOp Factor
Qualifier = . identifier | + | % | % TypeSpecification | [ExpressionList]
Stmt = Expression | LeftSide « Expression | MEMORY [Interval] |
LeftSide [Interval] | (Expression) [Interval]
Sum = Product [. Sum AddingOp Product
TypeConstructor = @ TypeSpecification

INTEGER | BOOLEAN | CARDINAL |
CHARACTER | STRING | UNSPECIFIED |
identifier | identifier $ identifier |
identifier Typeldentifier

Typeldentifier

TypeSpecification Typeldentifier | TypeConstructor

Output Conventions 19

Section 5: Qutput Conventions

The debugger uses information about the types of variables to decide on an appropriate output
format. In gencral, compile-time constants are not displayed (with the exception of Display
Variable). Listed below are the types which the debugger distinguishes and the convention used
to display instances of each type.
ARRAY, ARRAY DESCRIPTOR
displays the first, seccond and last valucs of the array, unless the number of clements is
"small”, c.g., a=(10)[Vector[x: 0, y:0], Vector[x: 1, y: 1], ... , Vector[x: 9,
y:9]]. The parcnthesized value to the right of the "=" is the length of the array.
BOOLEAN

displays TRUE or FALSE. Sincc BOOLEAN is an cnumecrated type = {FALSE, TRUE}, values
outside this range arc indicated by a ? (probably an uninitialized variable).

CHARACTER
displays a printing character (¢) as 'c. A control character (X) other than BLANK, RUBOUT,
NUL, TAB, LF, FF, CR, or ESC is displayed as tX. Values greater than 177B are displayed in
octal.

ENUMERATED
displays the identificr constant used in the enumecrated type declaration. For example, an
instance ¢ of the typc ChannelState: TyPE = {disconnected, busy, available} is displayed
as c=busy. If the value is out of range (probably an uninitialized variable), a ? is
displayed.

INTEGER

always displays a decimal number. Uniformly, numeric output is decimal unless
terminated by "B" (octal).

POINTER

displays an octal number, terminated with an "+", i.c., p=107362B+.

displays two octal numbers, i.c., p = PORT [0, 172520B].
PROCEDURE, SIGNAL, ERROR
displays thc name of the procedurc (with its local frame) and the name of the program

modulc in which it resides (with its global frame), c.g., GetMyChar, L: 1650648 (in
CollectParams, G: 166514B). Proccdurc variables which do not contain valid-

Output Conventions 20

descriptors gencrate a "?".
PROCESS

displays a ProcessHandle (pointcr to a ProcessStateBlock), i.c., p = PROCESS [2002B].
Sce the process scction of the Mesa System Documentation for further details.

RECORD
the record’s type identifier is followed by a bracketed list of cach ficld name and its
value. For cxample, an instance v of the rccord Vector: RECORD [x,y: INTEGER] is
displayed as v=Vector[x: 9, y: -1].

STRING
displays the name of the string, followed by its current length, its maximum length, and
the string body, c.g., s=(3,10)"foo". If the string is longer than 60 characters, the first
40 and the last 10 arc displayed. If the string is N, s=NIL is displayed.

SUBRANGE

displays an octal number if the upper limit cxceeds 77777B, decimal otherwise.

Signal and Error Messages 21

Section 6: Signal and Error Messages

The following messages are gencrated by the dcbugger. Wherever possible, there is also an
cxplanation of what might have caused the problem and what you can do about it.

Breakpoints
-- not allowed here!

An attempt was made to sct a breakpoint on an opcode on which it is not allowed (check
the code for your program).

-~ does not return!

An attempt was made to set an cxit breakpoint on a procedure in which the return
statement is not in the correct location (check the code for your program).

Breakpoint not found!

You have swapped to the debugger when the breakpoint information (frame, pc, ectc.)
cannot be found (check the code for your program).

Command Execcution
.. aborted
Exccution of the current command has been aborted (+DEL has been typed).
|Command not allowed

Exccution of the current command is not allowed since the loadstate (source of debugger
bed information) appears to be invalid,

Core 1image not healthy, can't swap!

You may only Quit or terminate the session (Ki11 session) after the debugger has been
bootloaded.

Displaying the stack
- No previous frame!

The cnd of the stack has been reached.

Signal and FError Messages 22

No symbol table. for nnnnnnB

The symbol table file corresponding to the frame nnnnnnB is missing; any attecmpt to
symbolically reference variables in this module will fail. (In general, this message is a
warning.) '

Entering the dcbugger
Debugger Bootloaded] ***

Appcars at the top of the DEBUG.TYPESCRIPT window after you have booted from the
MESADEBUGGER filc (by typing Bootfrom MesaDebugger to the Alto Executive). This
gets you into the debugger and allows you to look at what was going on. However, you
may not proceed after the dcbugger has becn bootloaded.

#» Fatal System Error (Punt) ***

Appears when the system can no longer continue, often a result of running out of
mecmory or frame space. (The most helpful thing for you to do at this point is to
Display Stack for several levels and look at the variables to try to figure out what was
going on.)

% Interrupt *

Appears at the top of the DEBUG.TYPESCRIPT window after you have entered the debugger
via interrupt mode.

ResumeError!

You have attempted to continue exccution from an ERROR. This may occur both in the
situation described below or as the result of a programming error. (The debugger does
not support resuming SIGNALs which recturn values.)

#%*% yncaught SIGNAL SoS (in MayDay)

The user program has raised a SIGNAL (ERROR) which no onc dynamically nested above the
SIGNAL invocation was prepared to catch. The debugger prints the name of the SIGNAL, lists
its parameters (if any), crcates a ncw instance of the debugger, and gives control to the
command processor. At this point you may, for example, display the stack to sce who
raised the uncaught SIGNAL.

If the scmantics of the situation permit, you may procced execution at the point of the
SIGNAL’s invocation by issuing a Proceed command. Alternatively, you retire to the
dynamically enclosing instance of the debugger by issuing a Quit command. If the SIGNAL
actually was an ERROR and you clcct to Proceed, you get a ResumeError.

Interpreter

Invalid Type.
Invalid Expression.
Invalid Character.
Invalid Number.

Not Implemented.

— tem = e o

Signal and Error Messages 23

The interpreter has been given an invalid expression.

Parameters
-- is an invalid identifier]
The first character of your identifier is not an upper or lower case letter of the alphabet.
|Number
An invalid number has been typed.
IString too 1long
The string you have just typed is too long. String paramecters are subject to the following
restrictions: identifiers and string constants are limited to 40 characters, source-text

paramcters arc limited to 60 characters, and conditions and expressions are limited to 100
characters.

Symbol Lookup
Ixyz

The variable named xyz has not been found.
IFile: xyz

The file named xyz has not been found.
IFile: --compressed symbols--

The symbol file has been compressed.
--- has incorrect version!

The symbol' file has an incorrect version stamp.
I1String: xyz

The scarch for the string xyz has failed.

Validity checking

--- is not a framel

--- 1is not a global framel

--- is a clobbered frame!

--- has a NULL returnlink!
----has a clobbered accesslink!
--- 1is an invalid ProcessHandle!
--- 1is an invalid image file!

The structurc in question appcars to be clobbered (invalid in somc way).

Debugger Summary

AScii read [address, n]
ATtach Image [filename]
Symbols [globalframe, filename]
Break Entry [proc, condition]
Module [module, condition, source]
Procedure [proc, condition, source]
Xit [proc, condition]
CAse off [confim]
on [confim]
CLear All Breaks [confimm]
Entry traces [module]
Traces [confim]
Xit traces [module]
Break [proc, source]
Entry Break [proc]
Trace [proc]
Module Break [module, source]
Trace [module, source]
Trace [proc, source]
Xit Break [proc]
Trace [proc]
COremap [confim]
CUrrent context
Display Configuration
Eval- stack
Frame [address]
GlobalFrameTable
Module [module]
Process [process] - n,p,q,r,s
Queue [id]
Stack - j,n,p,V,r,S,q
Variable [id]
Find variable [id]
Interpret Array [array, index, n)
Call [proc]
De- reference [ptr]
Expression [exp]
Pointer [address, type]
String [string, index, n]

@ {var]

Version 4.0

Kill session [confim]

List Breaks [confirm]
Configurations [confirm]
Processes [confim]

Traces [confirm]
Octal Clear break [globalframe, bytepc]
Read [address, n]
Set break [globalframe, bytepc]
Write [address, rhs]

Proceed [confim]

Quit [confim)]

Reset context [confirm]

SEt Configuration [config]

Module context [module]
Octal context [address]
Process context [process]
Root configuration [config]
STart [address] '
Trace All Entries [module]
Xits [module]
Entry [proc,condition]
Module [module, condition, source]
Procedure [proc, condition, source]
Xit [proc, condition]
Userscreen [confim]
Worry off [confimm]
on [confim]
=~ [comment]

Stmtl.ist
AddingOp
BuiltinCall

Expression
ExpressionList
Factor
Interval
LeftSide

Literal

MultiplyingOp
Primary
Product
Qualifier
Stmt

Sum
TypeConstructor

Typeldentifier

TypeSpecification:

Debugger Interpreter Grammar
Version 4.0

Stmt | StmtList; Stmt
+] -

LENGTH [LeftSide] | BASE [LeftSide] |
DESCRIPTOR [Expression] |

DESCRIPTOR [Expression , Expression] |
size [TypeSpecification]

Sum

Expression | ExpressionlList, Expression |

- Primary | Primary

Expression .. Expression | Expression ! Expression

identifier | Literal | MEMORY [Expression] |
LeftSide Qualifier | (Expression) Qualifier |
identifier $ identifier | numericLiteral $ identifier

numericlLiteral |
stringLiteral | -- all defined outside the grammar
characteirliteral

*| /7] mobp

LeftSide | (Expression) | @ LeftSide | BuiltinCall

Factor | Product MultiplyingOp Factor

. identifier | 1 | % | % TypeSpecification | [ExpressionList]

Expression | LeftSide « Expression | MEMORY [Interval] |
LeftSide [Interval] | (Expression) [Interval]

Product | Sum AddingOp Product
@ TypeSpecification

INTEGER | BOOLEAN | CARDINAL |
CHARACTER | STRING | UNSPECIFIED |
identifier | identifier $ identifier |
identifier Typeldentifier

Typeldentifier | TypeConstructor

Windex Summary

Version 4.0

WHAT WINDEX MOUSE BUTTONS DO:

Scroll Bar Text Area
RED ScrollUp Select/Extend characters
YELLOW Thumb Select/Extend words
BLUE ScroliDown Menu Commands
YELLOW/BLUE "~ NormalizeSelection
MENU COMMANDS:
Create [window] Find [selection, window]
Destroy [window] Set Brk [selection]
Move [window] CIr Brk [selection]
Grow [window] Set Trc [selection]
Load [selection, window] Set Pos [index, window]
Stuff It [selection, window] Keys On/Off
WHAT MENU MOUSE BUTTONS DO:
RED "Do it" - in this window/ at this spot
BLUE Reset to previous state
WHAT KEYSET BUTTONS DO:
BS DEL ESC CR STUFF IT
DURING TYPE IN:
BS Backspace character
CONTROL-W Backspace word
FL4 Stuff current selection into default window

Fetch Command Summary

Close connection [confirm]
DElete filename [filename] _
DUmp from remote file [dumpfile]
Free pages

List remote file designator [filelist]
LOad from remote file [dumpfile]
Open connection [host, directory]
Quit [confirm]

Retrieve filename [filename]

Store filename [filename]

Inter- Office Memorandum

To Mesa Users Date May 31, 1978
From Barbara Koalkin Location Palo Alto
Subject Decbugger - Extended Features Organization SDD/SD

(EROX

Filed on: [IRIS]<MESA> DOC>XDF.BRAVO

There are three cxtended featurcs available with the Mesa 4.0 dcbugger on an experimental
basis. Onec of thcese provides access to FTP to allow a user to retricve files from remote
locations from within the dcbugger. Another new debugger command allows a user to
invoke a spccial dcbugging package. The window manager (WindEx) has been cxpanded in
an attempt to extend the user interface to the debugger. Each feature is described below in
further detail. We encourage feedback on these features and remind you that due to their
experimental nature, they are subject to change.

Debugger FTP

The Mesa 4.0 debugger has the capability to invoke a subset of the standard FTP commands
from within the debugger cnvironment without having to exit to the Alto Executive. The
dcbugger’s FTP command is built on top of the standard Mcsa FTP package and therefore
any comments and/or problems regarding FTP itself should be addressed to the SDD
Communications Group. tFtp (control-F) enables the following commands (see the FTP
documentation for further details):

Close connection [confirm]

closes thc currently open FTP conncction,

DElete filename filecname

tries to delete filename from the local disk, regardiess of whether the file is in use. If it
finds it impossible to delete the file duc to some of its own pointers that would be left
dangling, it docs not allow you to do so (c.g., you cannot dclete XDEBUG.IMAGE). Beware of
your own references!)

DUmp to remote file dumpfile

bundles together a group of files from the local file system into a dump format’ file and
storces the result as dumplile. FT'P asks you for the names of the local files to be included.
Terminate the dump by typing a carriage rcturn (CR).

Free pages

tells you how many free pages are left on your disk,

Dcbugger - Extended Features 2

LIst remote file designator [filelist

lists all files in the remote host corresponding to filelist. This must conform to the file
naming conventions on the remote host. You may designate multiple files by the use of "*"
expansion.

LOad from remote file dumpfile

performs the inverse opecration of DUmp, unbundling a dump-format file in the remote
system and storing the constituent files in the local file system.

Open connection host, dircctory

opens a conncction to the FTP Server in the specified host and (optional) specified
directory.

Quit [confirm]

takes you out of FTP mode and returns you to the debugger command processor. The
dcbugger closes your conncction when you leave FTP, if you have forgotten to do so.

Retrieve filename filcname

transfers filename from the remote host to the local host. The filename must conform to
the file naming conventions on the remote host. You may designatec multiple files by the
use of "*" cxpansion if the remote scrver supports them (currently Maxc and IFS do). Note
that the byte count is printed out truncated to 16 bits,

Store filename filename

transfers filename from the local host to the remote host. Alto filename conventions apply
to the local file; "*' expansion is not supported.

Warning: Be careful not to change any files out from under the program you are debugging;
the debugger makes no provisions for checking this when you ask to delete or update a
local file! ’

In order for you to be able to use the FTP commands, you must retrieve the file FETCH.BCD
and load it into your dcbugger. This may be done when you are installing your dcbugger, in
the same¢ way as installing the window manager. Once you arc inside the dcbugger nub,
before you install, type New - FETCH which will load the FI'P package. You may later
invoke FTP at any timc by typing control-F to the dcbugger. If you wish to load the FTP
package at somc later time, simply enter the debugger nub (control-D) and then load
FETCH. If you do not have the FTP package loaded, you may still use the Delete, Free
pages, and Quit commands. Howcver trying to use any of the other FTP commands will
give you the mecssage "-~ FTP not dinstalled".

Dcbugger User Procedures

The new tUserProc (control-U) command allows you to load a decbugging package into
the debugger and invoke it at any time simply by typing control-U. 'The mechanism for
loading is the same as for loading the window manager. Simply cnter the debugger nub;
then do a >New YourOwnFileName, followed by an (optional) Start. Your program must

Debugger - Extended Features 3

iMPORT DebugUtilityDefs and make a call to:
AddCommand: PROCEDURE [tag: STRING, proc: PROCEDURE].

which expects the name of the command and the proccdule to call when this command is
invoked.

Internally, things work as follows: When a user makes a call to AddCommand, the proccdure
gets added to the list of user procs that have alrcady been loaded. When the tUserProc
command is invoked, the dcbugger looks to sce if there have been any procedurces loaded. If
there is only one, it will be invoked automatically. If several user procs have been loaded,
typing "?" displays a list of the available commands. The mecssage " INo user procs."” is
displayed if the debugger can’t find any proccdures that have been loaded.

The dcbugger gives you added help in gaining morc access to the information it already
knows about your programs. Taking advantage of the configuration format for grouping
modules, the debugger’s configuration EXPORTS all of the dcbugger’s interfaces:
DebugBreakptDefs, DebugConfigDefs, DebugFtpDefs, DebuggerDefs, DebugintempretDefs,
DebugMiscDefs, and DebugUtilityDefs. A uscr program can gct access to any of the
debugger’s puBLIC proccdures simply by MPORTing the definitions modules of the procedures
that you want to usc. When writing your own debugging routines, look carcfully at some of
the utility routines that the dcbugger alrcady provides (cg., ModuleNameToFrame,
FrameToModuleName, SREAD, ctc.). You should also look at the <MesaLib> dircctory for
UserProcs that other Mesa users have alrcady written and dcbugged.

Warning: The Mesa Group makes no guarantees about the stability of these mlerfaces. Use
at your own risk!

Window manager

The new window manager (WindEx) has the ability to handle long files (over 64K
characters), sct breakpoints by sclecting, position a file in a window using a character index,
and (optionally) usc the keyset as an input device. Several bugs have been fixed and
performance has been improved. - The documentation that follows is the complete
documentation for WindEx. »

Loading WindEx

To load WindEx, exccute a New - Start scquence on the file WINDEX.BCD before installing the
dcbugger. Alternately, you may enter the debugger nub at some later time (using control-
D) and load WindEx. You may also load WindEx from the command line by typing XDebug
WindEx/I to the Alto Exccutive which loads WindEx when installing the dcbugger
(additionally, you can usc the L switch to load WindEx with code links to save space).

Current window

Using WindEx, the concept of "the current window” is clecarly visible. A window is current
until the cursor is moved to another window and a mousc button is clicked. As a result, a
window is not rcpainted until it is made current. After any action is taken, the current
window is rcpainted and its sclection is updated.

Dcbugger - Extended Features 4

Text area

Sclections are made by depressing cither the RED or YELLOW mouse buttons while in the text
arca. RED selects a character and cxtends sclections by characters; YELLOW selects a word
and cxtends sclections by words. Characters typed into a scratch window arc automatically
sclected as they are typed.

Scroll bar

The scrolling commands are activated by moving the cursor into the scroll bar (left margin
of a window) and clicking somec combination of mouse buttons. In all cases, scrolling is
activated when the mousc buttons are released. Moving out of the scroll bar before relcasing
the buttons rcturns you to text sclection mode without' repositioning the file. The
thermomecter in the scroll bar shows the current position of the window in the file. The
positioning commands are as follows:

scrolling up [RED button]
moves the line next to the cursor to the top of the window.

relative scrolling [YELLOW button]
moves to the position in the file corresponding to the relative position of the cursor
in the scroll bar (also called "thumbing").

scrolling down [BLUE button]
causcs the line at the top of the window to be moved next to the cursor.

normalize seclection [YELLOW and BLUE buttons]
causes the line containing the current selection to be moved next to the cursor.

Menu Commands

When the BLUE mouse .button is pressed in the text arca of a window, the WindEx menu -
appears and the cursor changes to a left arrow. Select a menu command by pointing at it
(causing it to video reverse) and releasing the mouse button. If you do not wish to execute
the command, release the cursor outside the region of the menu. In all cases (except where
otherwisc noted below) clicking the RED mouse button causes the command to be exccuted;
clicking the BLUE mouse button rescts the window to its previous state. After sccing the
menu, if you do not wish to cxecute a menu command, just move the cursor away from the
menu and releasc the BLUE mouse button. The menu commands are as follows:

Create

creates a new scratch window (that accepts keyboard input) at the place sclected by clicking
RED. Notc that a maximum of four scratch windows may cxist at the samec time.

Destroy

destroys the window sclected by moving the bullscye cursor into a window and clicking RED.
Note that windows bcelonging to the -dcbugger cannot be destroyed by the user.

Dcbugger - Extended Features 5

Move

changes the position of the current window; the window sticks to the cursor as it is moved
around. Clicking RED positions the upper-left hand corner of the window to the cursor
location; clicking BLUE rcturns the window to its previous position.

Grow

changes the size of the current window; the lower right-hand corner of the window sticks to
the cursor and the window turns gray. Clicking RED fixes the size of the window (subject to
the minimum size restriction); clicking BLUE resets the window to its previous size.

Load

loads a file into the window sclected by clicking RED, using the selection of the current
window as a filename. Alternately, if you type a filcname terminated by the escape
character (Esc) into a scratch window, the window is automatically loaded with that file.
Notec that the user cannot load into the window containing DEBUG.TYPESCRIPT or any other
windows bclonging to the dcbugger.

Stuff It

takes the sclection of the current window and stuffs it into the input strcam of the window
selected by clicking RED. The lower left function key on Alto Il keyboards (FL4) stuffs the
current sclection into the default window (the debugger’s. typescript).

Find

finds the selection of the current window in the window sclected by clicking RED. The
scarch begins at the cnd of the sclection of the window being scarched. If the search is
successful, the text becomes the new seclection and is scrolled to the top of the window;
otherwise, the sclection remains the same,

Set Brk

uses the sclection of the current window to set a breakpoint. If you select the word
"PROCEDURE", a breakpoint is sct on the entry to the procedure; if you seclect the word
"RETURN", a brecakpoint is set on the exit of the procedurce; otherwise a breakpoint is set at
the closest statement enclosing the selection. Confirmation is given by the sclection being
moved to the place at which the breakpoint is actually sct. The window must contain the
source file for a module in the current configuration; in the casc of multiple instances of a
module, the namc of the current context must be the same as the source file.

Clr Brk
clears the breakpoint or traccpoint as specified above.
Set Trc

scts a tracepoint as specified above. Confirmation is given by the sclection being moved to
the place at which the traccpoint is actually sct.

Debugger - Extended Features 6

Set Pos

takes the sclection of the current window as a character index and positions the file in the
window sclected by clicking RED to that character position.

Keys On/0ff
activates/dcactivates input from the keyset as described bclow.

When WindEx is actively working on a command, the cursor is in the shapc of hourglass.
When it is done with the current task, the cursor returns to its normal shape.

Keyset
The keyset can be used as an additional source of text input to WindEx. Keyset chords are
described as octal numbers with 1B corresponding to the rightmost key and 208 to the
leftmost. The keysct forms a chord by oRing all keys depressed and returns the chord when
all keys are relecased. Be careful not to have any books on the keyset when it is activel
Keyset Commands
The keyset commands involve stuffing characters and sclections into the default window
(which is the DEBUG.TYPESCRIPT window when WindEx is loaded with the dcbugger). In all
cases, the default window is made the current window at the end of the command. The
keyset commands are as follows:

1B stuffs the sclection of the current window.

2B stuffs a cafriage return (CR).

3B stuffs the selection of the. current window followed by a CR.

4B stuffs an escape (ESC).

10B stuffs a dclete (DEL).

20B stuffs a backspace (BS).
Keyset Input
Holding down thec RED and YELLOW mousc buttons puts the keyset into text input mode.
For cach chord typed, the corresponding character is put into the input strcam of the current

window. The characters supported are 'A..'z (1B..32B), '+ (33B), BS (37B).. Attached is a label
that can be taped to your keyset and used as a guide to the appropriate codes.

Features

Extended

Dcbugger -

X X . X . X . X
¥ . XX . .XX
XXX X .

XX XX XXX XX

NEFDIS>SX>N*+

X X X X .

XX . . XX . .X
e o XX XX .

XX XX XX . .
...... X X X
-¥ 122000

X X X X -
....... X X

<0 OOWuLOCI o

STUFF

ESC CR

DEL

